首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正欧拉在1765年给出关于三角形的外接圆半径R与内切圆半径r的著名不等式R≥2r.近年来,不少文章对这个不等式进行探讨,如文[1]、[2]、[3]、[4],但是这些都是基于三角形下进行的.本文针对具有外接圆和内切圆的多边形,推广出其外接圆半径R与内切圆半径r具有如下关系:R1cos(πN)×r其中:N表示多边形的边数.假设具有外接圆和内切圆的多边形为N边形;该N边形的边长分别为:d1,d2,…,dN;且各边所对应的外接圆的圆心  相似文献   

2.
设三角形的内切圆和外接圆的半径分别为r和R,则2r≤R。对于上述著名的欧拉不等式,本文给出它的一个链,同时还给出欧拉不等式在四边形中的推广及其链。一、欧拉不等式的链定理1 设三角形的内切圆和外接圆的半径分别为r和R,三边为a、b、c,则2r≤(abc/(a+b+c))~(1/2)≤R。  相似文献   

3.
欧拉不等式是指:若三角形的内切圆和外接圆半径分别为r和R,则R≥2r。将此不等式推广到四边形中,有: 定理设双圆四边形(既有内切圆又有外连圆的四边形的内切圆和外接圆的半径分别为r和R,则 R≥2~(1/2)r ①分析如图,设ABCD为双圆四边形,边长依次为a、b、c、d,令AC=u,则 u=((ac bd)(ad bc)/(ab cd))~(1/2) (参见[3]) 设ABCD的面积为△,则△A=rs,其中s=1/2(a b c d)∴r=△/s。  相似文献   

4.
平面几何中有一个著名的Euler定理:“已知R是△ABC外接国半径,r是内切圆半径,d是两圆的圆心距,则d=√R(R-2r)。”由定理我们很快得到一个几何不等式R-2 r≥0即R≥2 r,它被称为Euler不等式。Euler不等式R≥2r,反映了三角形外接圆半径与内切圆半径之间的关系,简洁明快,这个不等式曾引起众多数学名家的浓厚兴趣,足见其重要性。事实上,在处理三角形不等式的问题时,常常将三角形的三边和三角用半周长s、外接圆半径R和内切圆半径r来表示,  相似文献   

5.
文[1]指出:在双心四边形 ABCD 中,若其外接圆半径为 R,面积为 S,内切圆半径为 r,则(16r~2)/S≤cotA/2 cotB/2 cotC/2 cotD/2≤(8R~2)/S(1)笔者经研究发现,在双心 n 边形中也有定理在双心 n 边形 A_1A_2…A_n 中,若其外接圆半径为 R,内切圆半径为 r,面积为 S,则有  相似文献   

6.
<正>设△ABC的三边为a、b、c,外接圆和内切圆半径分别为R、r,则有著名的欧拉不等式R≥2r.文\[1\]中建立了如下三角形式的加强.定理1设R、r分别为△ABC的外接圆和内切圆半径,则有(Σ表示循环和)■当且仅当△ABC为正三角形时取等号.由于式(1)可改写为■,由熟知的不等式■,可知式  相似文献   

7.
文[1]将欧拉(Ewler)不等式向双圆n边形(既有外接圆又有内切圆的凸n边形)推广,得到:Rcos≥r(1)近期,文[2]和[3]从“长度”出发,分别给出了不等式(1)的加强形式.本文拟建立它的一种新的面积隔离,即有定理设双圆n边形的面积、外接圆半径、内切圆半径分别为S、R、r,则当且仅当n边形是正n边形时不等式(2取)等号.证如图1,I为双圆n边形A_1A_2…A_n的内切圆圆心,令A_iA(i+1)之长为a_i(i=1,2,……,n;A_(n l)≡A_1).考虑到y=ctgx在(0,)上是下凸函数,且,从而由下凸函数的琴生不等式得:因此,有:下面分几种情形来证…  相似文献   

8.
三角形的外接圆半径R与内切圆直径2r的比R/2r称为三角形的欧拉比,由欧拉不等式R≥2r可知,三角形的欧拉剧R/2r不小于1.本文利用三角形的基本元素(边长和面积)给出一个关于三角形的欧拉比的优美不等式.  相似文献   

9.
1906年,纽贝格(见文[1])得到:若△ABC三边长及外接圆、内切圆半径分别为a、b、c、R、r,则 36r~2≤a~2 b~2 c~2≤9(R~2) (1) 当且仅当a=b=c时等号成立。 笔者发现上述不等式可加细为: 36r~2≤∑a~2-∑(a-b)~2≤∑a~2  相似文献   

10.
著名的Gerretsen不等式是:若s、R、r为△ABC的半周长及外接圆、内切圆半径,则16r-5r~2≤s~2≤4R~2+4Rr+3r~2 (1) 不等式(1)在证明三角不等式时有着广泛的应用。本文先给出s~2≤4R+4Rr+3r的一个加强: 命题1 s~2≤R(4R+r)~2/2(2R-r) (2) 证明 设a、b、c为△ABC三边长,将三角形中恒等式s-a=r/tg(A/2)和a=2RsinA相加,整理得:  相似文献   

11.
“R≥2r”即“三角形的外接圆半径不小于其内切圆直径”,这就是著名的欧拉(Euler)不等式.  相似文献   

12.
1765年,瑞士数学家欧拉(Euler)发现了如下定理:定理1(欧拉定理) 设△ABC的外接回、内切圆的半径分别为R、r,其外心到内心的距离为d,则d~2=R~2-2Rr这个优美对称的结果,激发我们去寻求三角形中其它特殊点如重心、垂心、内心、外心之间的距离的计算公式.对此,我们有如下的定理2(心距定理) 设△ABC的三边为a、b、c,外接圆、内切圆半径分别为R、r,其外心、内心、垂心到重心的距离分别为e、f、g,外心到垂心的距离为k,则  相似文献   

13.
176 5年 ,著名数学家 Euler建立了关于三角形外接圆半径 R与内切圆半径 r的一个重要不等式 [1 ]R≥ 2 r. ( 1 )文 [2 ]给出上述不等式一个十分漂亮的加强形式R≥ 2 r+ 18R[( a- b) 2 + ( b- c) 2 + ( c- a) 2 ],( 2 )其中 a,b,c为三角形的三边长 .本文进一步加强 Euler不等式并给出其逆向形式 .定理  a,b,c,R,r分别为△ ABC的三边长、外接圆半径、内切圆半径 ,则11 6 R( | a- b| + | b- c| + | c- a| ) 2 + 2 r≤ R≤ 2 r+ 11 6 r( | a- b| + | b- c| + | c- a| ) 2 .( 3)证明  ( 3)式中左边不等式等价于R- 2 r- 11 6 R( | a- b| + …  相似文献   

14.
关联四个圆的一个恒等式   总被引:1,自引:0,他引:1  
文 [1 ]给出了关联三个圆的一个结论 :图 1命题 在圆内接四边形ABCD中 ,O、R分别是其外接圆的圆心和半径 ,I1、I2 分别是△ACD、△BCD的内切圆的圆心 ,r1、r2 分别是△ACD、△BCD的内切圆半径 ,O到I1、I2 的距离分别记为d1、d2 .则有R2 -d21r1=R2 -d22r2 .①本文将给出该命题的一个推广 ,得出涉及两个三角形、关联四个圆的一个恒等式 .命题 设△A1B1C1的外心为O1,内心为I1,外接圆半径为R1,内切圆半径为r1,O1I1=d1;△A2 B2 C2 的外心为O2 ,内心为I2 ,外接圆半径为R2 ,内切圆半径为r2 ,O2 I2=d2 .则有R21-d21R1r1=R22 -d2…  相似文献   

15.
1978年,B.M.Milisavljevic建立关于三角形边长a、b、c与外接圆半径R、内切圆半径r的一个几何不等式[1]Rr≥31∑ba+c.(1)Milisavljevic不等式形式优美,且加强了著名的Euler不等式[2]R≥2r,引起了不少人的兴趣.1996年,宋庆先生撰文[2]指出,Milisavljevic不等式强于不等式Rr≥43∑b+ac;(2)该文中,作者建立了一个较(2)式强但与Milisavljevic不等式不分强弱的不等式Rr≥98???∑b+a c???2.(3)本文统一加强上述不等式,并给出一个逆向不等式.定理设a、b、c为△ABC的三边长,s、R、r分别为三角形的半周长、外接圆半径、内切圆半径,则29???∑s?a…  相似文献   

16.
<正>不等式"R≥2r",也即"三角形的外接圆半径不小于其内切圆直径",这就是著名的欧拉(Euler)不等式.文[1]、[2]给出的欧拉不等式"证法不容易",文[3]、[4]给出了"更简捷证法",受其启发,本文将再给出两则新简证.本文中,设△ABC的三边a、b、c所对的角分别为A、B、C,△ABC的外接圆和内切圆的  相似文献   

17.
平面几何中,有一个欧拉不等式: 设△ABC的外接圆和内切圆的半径分别是R和r,则 R≥2r。其中等号当且仅当△ABC是正三角形时成立。这个结论在三维空间中可推广如下: 设四面体A_1—A_2A_3A_4(简记四面体A,下同)的外接球和内切球的半径分别是R和r,则  相似文献   

18.
<正>1765年,大数学家欧拉(L.Euler,17071783)建立了一个关于△ABC的外接圆半径R与内切圆半径r之间关系的著名不等式:R≥2r,当且仅当△ABC为正三角形时等号成立.由于该不等式具有简单而不平凡的特点,所以至今仍然在几何不等式领域里保持着高水平的地位,关于它的各种加强和推广的研究一直是几何不等式研究的热点,笔者在研究三角形内部任意一点到各边的距离时得到了欧拉不等式的如下推广.  相似文献   

19.
文 [1]得出H .Guggenheimer不等式rnahna+rnbhnb+rnchnc≥ 3 (n≥ 1) .①文 [2 ]将式①加强为rarbrchahbhc≥ 1.②本文将证明两个更强的结论 .命题 1 设△ABC的高和旁切圆 ,外接圆 ,内切圆半径分别为ha、hb、hc,ra、rb、rc,R ,r .在n≥ 1时 ,有rnahna+rnbhnb+rnchnc≥ 3 2R -r3rn.③引理[3 ]  设p为△ABC的半周长 ,则有∑ara=2p( 2R -r) .④其中“∑”表示循环和 .命题的证明 :由三角形中的恒等式aha=2pr等和式④ ,以及不等式 an+bn+cn3 ≥a +b +c3n 知rnahna+rnbhnb+rnchnc=∑rnahna=∑(ara) n(aha) n=∑(ara) n( 2pr) n ≥ 3( 2pr)…  相似文献   

20.
1765年,著名数学家Euler建立了关于三角形外接圆半径R和内切圆半径r的一个重要不等式:R≥2r(1),文给出他的一个代数形式的加强:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号