首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 243 毫秒
1.
研究了催化剂、光源、溶液初始浓度、溶液初始pH值等因素对甲基橙光催化氧化降解反应的影响.实验结果表明,最佳实验条件为:以灼烧的TiO2为催化剂,催化剂的投加量为0,8g·L^-1,采用浸波式紫外灯作光源,甲基橙初始浓度为20mg·L^-1,溶液初始pH=3.该实验条件下,甲基橙一小时脱色率可达81.3%.该研究可为偶氮染料降解提供新的思路.  相似文献   

2.
光催化还原法制备载银二氧化钛   总被引:4,自引:0,他引:4  
利用重金属离子光催化还原技术在不同条件下制备不同的Ag/TiO2,并用TEM等方法对这些催化剂的载银量、银的分布进行表征,同时利用这些Ag/TiO2催化剂对亚甲基蓝和甲基橙进行降解实验。结果表明Ag/TiO2对亚甲基蓝和甲基橙的脱色效果较TiO2有很大提高,而且载银量存在最佳值。在还原体系中加入EDTA时,可以适当提高催化剂的载银速度。  相似文献   

3.
电气石对TiO2光催化活性的影响研究   总被引:1,自引:0,他引:1  
采用电气石负载TiO2可见响应光催化功能材料,以甲基橙为降解脱色对象,考查了不同电气石加入量、催化剂质量、pH以及甲基橙浓度对光催化活性的影响。实验结果表明:电气石的加入有利于TiO2光催化活性的提高,其中电气石掺杂量为1%为最佳比例;催化剂加入量的增加有助于甲基橙的降解;在催化剂质量为0.2 g的条件下,甲基橙浓度为40 mg.L-1光催化降解甲基橙的效果最好。  相似文献   

4.
以钛酸四丁酯为钛源,硝酸银为银源,采用溶胶-凝胶法制备了掺银的纳米TiO2。用X射线衍射和透射电子显微镜对材料进行了表征,以掺银TiO2为催化剂对甲基橙进行了光催化降解实验。考查了催化剂掺银量、催化剂总用量、甲基橙溶液浓度及降解时间对甲基橙降解率的影响。结果表明,制得的样品颗粒细小均匀,3%掺银TiO2样品比表面积高达132.2 m2/g。掺银TiO2中的银钛原子摩尔比以及催化剂用量均影响光催化活性,银的掺杂量为3%时,纳米TiO2光催化活性最高,3%掺银TiO2催化剂最佳用量为0.3g/L。降解率随甲基橙初始浓度的增加而降低,随光照降解时间的增加而提高,光照20~30min之间,降解速度最快。  相似文献   

5.
以钛酸四丁酯为钛源,硝酸银为银源,采用溶胶-凝胶法制备了掺银的纳米Ti02。用X射线衍射和透射电子显微镜对材料进行了表征,以掺银TiO2为催化剂对甲基橙进行了光催化降解实验。考查了催化剂掺银量、催化剂总用量、甲基橙溶液浓度及降解时间对甲基橙降解率的影响。结果表明,制得的样品颗粒细小均匀,3%掺银Ti02样品比表面积高达132.2m^2/g。掺银Ti02中的银钛原子摩尔比以及催化剂用量均影响光催化活性,银的掺杂量为3%时,纳米TiO2光催化活性最高,3%掺银TiO2催化剂最佳用量为0.3g/L。降解率随甲基橙初始浓度的增加而降低,随光照降解时间的增加而提高,光照20-30min之间.降解速度最快。  相似文献   

6.
以磷钨杂多酸银盐为光催化剂光催化降解甲基橙溶液,并用正交实验探讨了其最佳条件。实验结果表明,对于20mg/L的甲基橙溶液,当pH=2,催化剂的用量为0.Sg/L,光催化降解时间为30min时,脱色率达到最大值93.7%。并且催化剂可以重复使用。最后。测定了该反应的化学动力学参数。  相似文献   

7.
以300W汞灯为光源,纳米TiO2为光催化剂,甲基橙为目标降解物,以分光光度法测定其脱色率,以重铬酸钾法测定其COD降解率,研究了在不同溶液pH值、甲基橙初始浓度及TiO2投加量等条件下的甲基橙光催化降解效率.结果表明,甲基橙溶液脱色率和COD降解率并不一致,脱色比COD降解更容易发生;将脱色率、COD降解率等指标的变化综合考虑,才能更全面准确地判断光催化反应的效率.  相似文献   

8.
二氧化钛(TiO2)作为一种催化剂已经得到了广泛的应用,特别是在污水处理方面。本课题主要探究了用二氧化钛(TiO2)光降解污水中的有机污染物甲基橙,并对其机理进行了探讨。通过分析二氧化钛(TiO2)的用量与甲基橙的用量比例、反应时间、pH值以及外界条件等因素对降解结果的影响,找到最佳的降解条件。实验结果表明:在125W高压汞灯的照射以及在磁力搅拌器的搅拌下,在强酸或强碱的条件下,当甲基橙:二氧化钛=1∶1000时,可达到最佳降解率。  相似文献   

9.
制备了磷钨酸四甲基铵并对其进行了初步表征。在光催化反应仪中,以紫外灯为光源,以磷钨酸四甲基铵为光催化剂,用正交实验探讨了光催化降解活性艳橙溶液的最佳条件。结果表明,对于10mg/L活性艳橙溶液,当pH=2.5,催化剂的用量为0.5g/L,光催化降解时间为30min时,脱色率达到最大值83.6%。最后,测定了该条件下反应的化学动力学参数。  相似文献   

10.
目的:研究生物炭催化臭氧氧化降解金橙Ⅱ染料废水的效果.方法:以金橙Ⅱ模拟印染废水作为实验对象,以生物炭为催化剂,对不同条件下(金橙Ⅱ初始浓度、生物炭使用量、气流量、臭氧浓度、初始pH值、臭氧氧化时间)的生物炭催化臭氧氧化降解金橙Ⅱ的效果进行研究.结果:相对于单独臭氧氧化降解金橙Ⅱ,生物炭催化臭氧氧化降解金橙Ⅱ的效果有显著提升.生物炭催化臭氧氧化降解金橙Ⅱ的实验结果表明,通过增加生物炭使用量,提高臭氧浓度,增大气流量,在一定范围内提高初始pH值,可以提升生物炭催化臭氧氧化降解金橙Ⅱ的去除率.羟基自由基是生物炭催化臭氧氧化降解金橙Ⅱ过程中的主要活性物质.结论:生物炭催化臭氧氧化降解金橙Ⅱ染料废水具有很好的效果,金橙Ⅱ初始浓度、生物炭使用量、气流量、臭氧浓度、初始pH值、臭氧氧化时间对生物炭催化臭氧氧化降解金橙Ⅱ染料废水效果有一定影响.  相似文献   

11.
采用流延成膜法,以戊二醛为交联剂制备Ti O2/壳聚糖复合膜。用X射线衍射仪,傅立叶红外光谱仪以及扫描电镜对复合膜进行表征,并研究了不同戊二醛含量对壳聚糖膜溶胀率的影响。以甲基橙降解反应为模型,研究Ti O2/壳聚糖复合膜降解染料废水的性能。结果表明:Ti O2与壳聚糖相容性较好,加入Ti O2可提高复合膜的机械强度,戊二醛交联能有效抑制膜的过度溶胀;复合膜对甲基橙的降解效果良好:当复合膜用量为0.30g,初始浓度为5mg/L甲基橙溶液50m L,p H为2.36,紫外光照射80min,降解率可达到85%以上,具有较好的应用前景。  相似文献   

12.
采用溶胶-凝胶法制备了TiO2/竹炭复合材料,研究了复合材料对偶氮染料甲基橙溶液的光降解。结果表明:在自然光照射下,当温度为343 K、复合材料投加量为0.60~1.20 g时,对5~15 mg/L的甲基橙溶液可达到良好的脱色效果;最佳脱色时溶液pH为2.0;复合材料对甲基橙的光催化降解符合反应一级动力学方程。  相似文献   

13.
以钛酸四丁酯为原料,在高浓度的硝酸溶液条件下,采用低温水解方法合成微晶TiO2光催化剂,分别采用XRD、FITR、SEM、TEM、PL等测试技术对催化剂进行了表征。实验结果表明:在低温85℃条件下,加入65 mL硝酸可以制得结构和形貌不同的TiO2微晶,该材料在225 nm波长诱导下表现出420 nm的发光性能。所得TiO2微晶60 min之内可在太阳光照射条件下将25 mg/L的甲基橙完全分解。  相似文献   

14.
以钛酸四丁酯为原料,在高浓度的硝酸溶液条件下,采用低温水解方法合成微晶TiO2光催化剂,分别采用XRD、FTTR、SEM、TEM、PL等测试技术对催化剂进行了表征。实验结果表明:在低温85℃条件下,加入65mL硝酸可以制得结构和形貌不同的HO2微晶,该材料在225nm波长诱导下表现出420砌的发光性能。所得TiO2微晶60min之内可在太阳光照射条件下将25mg/L的甲基橙完全分解。  相似文献   

15.
通过溶胶-凝胶法制备了Mo不同掺杂量的纳米TiO2光催化剂,进行了UV—Vis分析,并在紫外光源下对降解甲基橙光催化活性进行了测定.最后建立L-H模型和GM(1,1)模型,考查了Mo/TiO2对甲基橙的降解动力学,并对模型进行了比较.结果表明,纳米TiO2当煅烧温度为500℃时,Mo的最佳掺杂量为0.05mol%,L-H模型对有些Mo掺杂纳米TiO2光催化降解甲基橙存在偏差,且Andrews型稳健回归优于最小二乘算法的模拟结果.而GM(1,1)模型对Mo掺杂纳米TiO2光催化降解甲基橙能进行很好的实验模拟.  相似文献   

16.
稀土钐改性TiO2光催化性能有很大的争议,基于此采用溶胶-凝胶法制备了不同掺杂量和不同温度下煅烧的光催化剂,通过XRD和亚甲基蓝的降解实验,探讨了煅烧温度、空气流速、催化剂用量和掺杂量对亚甲基蓝的降解效果。结果表明:当煅烧温度为500℃,掺杂Sm^3+为1.2%,空气流速达到1.3L/min,催化剂用量为1.5g/L时,催化性能达到最好。  相似文献   

17.
通过溶胶-凝胶法制备了Mo不同掺杂量的纳米TiO2光催化剂,进行了UV-Vis分析,并在紫外光源下对降解甲基橙光催化活性进行了测定.最后建立L-H模型和GM(1,1)模型,考查了Mo/TiO2对甲基橙的降解动力学,并对模型进行了比较.结果表明,纳米TiO2当煅烧温度为500℃时,Mo的最佳掺杂量为0.05 mol%.L-H模型对有些Mo掺杂纳米TiO2光催化降解甲基橙存在偏差,且Andrews型稳健回归优于最小二乘算法的模拟结果.而GM(1,1)模型对Mo掺杂纳米TiO2光催化降解甲基橙能进行很好的实验模拟.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号