首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
While debate about the use of—and alternatives to—human cadaveric dissection in medical training is robust, little attention has been paid to questions about timing. This study explores the perspectives of medical students and recent graduates with regard to two key questions: when in the degree program do students prefer dissection opportunities and what are the students getting out of participating in dissection? Self-report survey data from students in preclinical years (n = 105), clinical years (n = 57), and graduates (n = 13) were analyzed. Most (89%) preferred dissection during the preclinical years, with no effect by training year (χ2 = 1.98, p = 0.16), previous anatomy (χ2 = 3.64, p = 0.31), or dissection (χ2 = 3.84, p = 0.26) experience. Three key findings emerged. First, the majority of students prefer to dissect in the preclinical years because they view dissection as important for developing foundation knowledge and delivering an opportunity for consolidation prior to transitioning to primarily clinical studies. In addition, students recognize that it is a time-consuming activity requiring specialized facilities. Second, three main understandings of the purpose of dissection were reported: depth of learning, learning experience, and real-world equivalence. Third, these student perspectives of the purpose of dissection are associated with timing preferences for dissection opportunities. The results identify the preclinical phase as the optimal time to strategically integrate dissection into medical training in order to maximize the benefits of this unique learning opportunity for students and minimize its impact upon curricular time.  相似文献   

2.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

3.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

4.
Gross anatomy is a source of anxiety for matriculating medical students due to the large volume of information presented in a truncated timeline, and because it may be their first exposure to human cadavers. This study aimed to assess if video-based resources would affect matriculating medical students' anatomy state anxiety levels. Videos were designed to be short, YouTube-based units that served to provide orientation information about the anatomy course, dissection facilities, and available study resources to dispel anxiety around beginning their anatomy studies. To evaluate the impact of the videos, students in two consecutive matriculating years (2018 and 2019) completed the validated State-Trait Anxiety Inventory and a demographic questionnaire. The 2019 cohort (n = 118) served as the experimental group with access to the videos; while the 2018 cohort (n = 120) without video access served as a historical control. Analyses revealed that the groups were equivalent in terms of trait anxiety (P = 0.854) and anatomy state anxiety even when student video exposure was controlled (P = 0.495). Anatomy state anxiety was only significantly lower in students with prior formal anatomy exposure (P = 0.006). Further inquiry into students' prior anatomy experience identified that individuals with post-secondary dissection experience were significantly less anxious than those without formal anatomical experience (P = 0.023). These results may serve as a cautionary tale to educators; while preference for video-based instructional materials is prevalent in the literature, videos delivered on public social media platforms fail to prepare students for the psychological impact of studying human anatomy.  相似文献   

5.
Binocular disparity provides one of the important depth cues within stereoscopic three-dimensional (3D) visualization technology. However, there is limited research on its effect on learning within a 3D augmented reality (AR) environment. This study evaluated the effect of binocular disparity on the acquisition of anatomical knowledge and perceived cognitive load in relation to visual-spatial abilities. In a double-center randomized controlled trial, first-year (bio)medical undergraduates studied lower extremity anatomy in an interactive 3D AR environment either with a stereoscopic 3D view (n = 32) or monoscopic 3D view (n = 34). Visual-spatial abilities were tested with a mental rotation test. Anatomical knowledge was assessed by a validated 30-item written test and 30-item specimen test. Cognitive load was measured by the NASA-TLX questionnaire. Students in the stereoscopic 3D and monoscopic 3D groups performed equally well in terms of percentage correct answers (written test: 47.9 ± 15.8 vs. 49.1 ± 18.3; P = 0.635; specimen test: 43.0 ± 17.9 vs. 46.3 ± 15.1; P = 0.429), and perceived cognitive load scores (6.2 ± 1.0 vs. 6.2 ± 1.3; P = 0.992). Regardless of intervention, visual-spatial abilities were positively associated with the specimen test scores (η2 = 0.13, P = 0.003), perceived representativeness of the anatomy test questions (P = 0.010) and subjective improvement in anatomy knowledge (P < 0.001). In conclusion, binocular disparity does not improve learning anatomy. Motion parallax should be considered as another important depth cue that contributes to depth perception during learning in a stereoscopic 3D AR environment.  相似文献   

6.
The effects of school‐based ethnic diversity on student well‐being and race‐related views were examined during the first year in middle school. To capture the dynamic nature of ethnic exposure, diversity was assessed both at the school‐level (n = 26) and based on academic course enrollments of African American, Asian, Latino, and White students (n = 4,302; = 11.33 years). Across all four pan‐ethnic groups, school‐level ethnic diversity was associated with lower sense of vulnerability (i.e., feeling safer, less victimized, and less lonely) as well as perceptions of teachers’ fair and equal treatment of ethnic groups and lower out‐group distance. Underscoring the role of individual experiences, exposure to diversity in academic classes moderated the association between school‐level diversity and the two aforementioned race‐related views.  相似文献   

7.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

8.
Students' motivation is a vital determinant of academic performance that is influenced by the learning environment. This study aimed to assess and analyze the motivation subscales between different cohorts (chiropractic, dental, medical) of anatomy students (n = 251) and to investigate if these subscales had an effect on the students' anatomy performance. A 31-item survey, the Motivated Strategies for Learning Questionnaire was utilized, covering items on intrinsic and extrinsic goal orientation, task value, control of learning belief, self-efficiency for learning and performance, and test anxiety. First-year dental students were significantly more anxious than chiropractic students. Second-year chiropractic students attached more value to anatomy education than second-year medical students. The outcome of this research demonstrated a significant relationship between first- and second-year chiropractic students between anatomy performance and motivation subscales controlling for gender such as self-efficacy for learning and performance was (β = 8, CI: 5.18–10.8, P < 0.001) and (β = 6.25, CI: 3.40–9.10, P < 0.001) for first year and second year, respectively. With regards to intrinsic goal orientation, it was (β = 4.02, CI: 1.19–6.86, P = 0.006) and (β = 5.38, CI: 2.32–8.44, P = 0.001) for first year and second year, respectively. For the control of learning beliefs, it was (β = 3.71, 95% CI: 0.18–7.25, P = 0.04) and (β = 3.07, CI: 0.03–6.12, P = 0.048) for first year and second year, respectively. Interventions aimed at improving these motivation subscales in students could boost their anatomy performance.  相似文献   

9.
Recently, faculty at Pritzker School of Medicine, The University of Chicago, have made efforts to improve the depth of radiological anatomy knowledge that students have, but no insights exist as to student and resident opinions of how clinically helpful deep anatomical understanding is. A single‐institution survey of second‐ and fourth‐year medical students and postgraduate year 1–4 residents from 11 specialties, composed of five‐point Likert questions, sample examination questions, and narrative response questions, was distributed in 2015. One hundred seventy‐seven of the 466 potential respondents replied (71 residents and 106 students), response rate 38.0%. No nonresponse bias was present in two separate analyses. Respondents generally favored a superficial “identification” question as more relevant to clinical practice, which was positively associated with increasing clinical experience ρ = 0.357, P < 0.001 by point‐biserial correlation. Students and residents most commonly used self‐directed methods to learn medical imaging during their medical anatomy courses (72.6 and 57.7%, respectively). Small group education was least commonly used by students and residents (45.3 and 39.4%, respectively), but most commonly recommended (62.3 and 69%, respectively). A total of 56.6 and 64.8% of students and residents, respectively, reported that having multiple learning methods was “quite” or “extremely” important. Respondents with more clinical experience were more likely to report that a superficial identification question was more clinically relevant than a question testing deeper radiological anatomy knowledge. Small group learning was preferred among students and residents but was the least commonly employed method of instruction. Both findings contrast starkly with current radiological anatomy instructional understanding and practices. Anat Sci Educ 11: 25–31. © 2017 American Association of Anatomists.  相似文献   

10.
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi‐disciplinary care team. This study aimed to create a modified team‐based learning (TBL) environment utilizing ultrasound technology during an interprofessional learning activity to enhance musculoskeletal anatomy knowledge of first year medical (MD) and physical therapy (PT) students. An ultrasound demonstration of structures of the upper limb was incorporated into the gross anatomy courses for first‐year MD (n = 53) and PT (n = 28) students. Immediately before the learning experience, all students took an individual readiness assurance test (iRAT) based on clinical concepts regarding the assigned study material. Students observed while a physical medicine and rehabilitation physician demonstrated the use of ultrasound as a diagnostic and procedural tool for the shoulder and elbow. Following the demonstration, students worked within interprofessional teams (n = 14 teams, 5–6 students per team) to review the related anatomy on dissected specimens. At the end of the session, students worked within interprofessional teams to complete a collaborative clinical case‐based multiple choice post‐test. Team scores were compared to the mean individual score within each team with the Wilcoxon signed‐rank test. Students scored higher on the collaborative post‐test (95.2 ±10.2%) than on the iRAT (66.1 ± 13.9% for MD students and 76.2 ±14.2% for PT students, P < 0.0001). Results suggest that this interprofessional team activity facilitated an improved understanding and clinical application of anatomy. Anat Sci Educ 11: 94–99. © 2017 American Association of Anatomists.  相似文献   

11.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

12.
The present study explored the environmental and genetic etiologies of the longitudinal relations between prereading skills and reading and spelling. Twin pairs (n = 489) were assessed before kindergarten (M = 4.9 years), post‐first grade (M = 7.4 years), and post‐fourth grade (M = 10.4 years). Genetic influences on five prereading skills (print knowledge, rapid naming, phonological awareness, vocabulary, and verbal memory) were primarily responsible for relations with word reading and spelling. However, relations with post‐fourth‐grade reading comprehension were due to both genetic and shared environmental influences. Genetic and shared environmental influences that were common among the prereading variables covaried with reading and spelling, as did genetic influences unique to verbal memory (only post‐fourth‐grade comprehension), print knowledge, and rapid naming.  相似文献   

13.
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

14.
The various psychological dimensions of professional identity formation (PIF) are an important aspect of the study course for undergraduate medical students. Anatomical learning environments have been repeatedly shown to play a critical role in forming such an identity; however, relevance of PIF during sonoanatomical training remains underexplored. At the end of their basic anatomy studies, third-semester medical students took part in a four-day block course on anatomy and imaging. Anatomical content was revised in small groups using peer teaching and imaging methods, including one hour of hands-on sonoanatomy sessions each day. On-site sonoanatomy was identified as an excellent format to support students' transition from the pre-clinical to clinical phase as medical experts-to-be. Students enjoyed practical exercises and the clinical input, which increased their interest in the medical profession and their academic studies. This study further examined the effects of the transition into an online-only format, necessitated by the current Covid-19 pandemic. A comparison was made between the quantitative and qualitative evaluation data, and the written results of examinations of several on-site (n = 1096, mean age = 22.4 years ± 2.18), and online-only cohorts (n = 230, mean age = 22.6 years ± 2.21). The online-only transition led to a reduction of all PIF-related variables measured, losing identity-related variables, increasing students' stress levels, and reducing their long-term academic performance. Together, this study demonstrates presence of PIF in undergraduate sonoanatomy teaching, and cautions against the uncritical online-only substitution of hands-on learning environments.  相似文献   

15.
In this quasi‐experimental study, the researchers examined the effects of implementing Readers Theatre in a second grade classroom, comprised of seven and eight‐year‐old students. The 70 subjects were chosen as a non‐probability sample from two different classes and served as the treatment (n = 29) and comparison (n = 41) groups. A repeated measures analysis of variance revealed statistically significant interaction and time effects. The post hoc analysis of simple effects indicated that the Readers Theatre treatment yielded larger effects on word recognition automaticity and prosody. Practical implications of this study suggest that consistent implementation of Readers Theatre in grade two classrooms can have a large impact on students' reading fluency.  相似文献   

16.
In response to the Covid-19 pandemic, medical educators have transformed pre-clerkship anatomy curricula into online formats. The purpose of this study was to evaluate the effectiveness and student perceptions of an online near-peer anatomy curriculum. The classes of 2022 and 2023 completed identical foundational anatomy curricula in-person, whereas the class of 2024 completed an adapted curriculum for remote online learning. Quantitative and qualitative responses were used to compare attitudes between instructional methods. Assessment scores and evaluation survey responses were collected from the classes of 2022 (n = 185), 2023 (n = 184), and 2024 (n = 183). Mean assessment scores (±SD) for the classes of 2022, 2023, and 2024 were 93.64% (±5.86), 93.75% (±4.09), and 92.04% (±4.83), respectively. Post hoc group comparisons showed the class of 2024 scored significantly lower than the two previous classes [2022: (H(1) = 18.58, P < 0.001), 2023: (H(1) = 18.65, P < 0.001)]. Mean survey results concerning curriculum quality were 4.06/5.00 for the class of 2023 and 3.57/5.0 for the class of 2024 (t(365) = 2.67, P = 0.008). Considering a small effect size (η2 = 0.034), there was no meaningful difference in student assessment scores. A potential drawback of online near-peer anatomy teaching remains in student perceptions of course quality; qualitative feedback suggested technological limitations and perceptions of online course instructors were partly responsible for lower student satisfaction. Following the Covid-19 pandemic, medical educators should incorporate the lessons learned from this unique educational inflection point to improve curricula moving forward.  相似文献   

17.
This experimental study was designed to investigate whether supervision meetings, in which students receive specific advice on how to use a development portfolio to monitor their progress and plan their future learning, helps them to develop self-directed learning skills and improve their learning in the domain. In the first year of a hairdressing program in vocational education, supervision meetings were used to provide students with either specific advice or not. Students in the advice group (n = 21) formulated better learning needs, selected more suitable learning tasks, completed more practical assignments, and acquired more certificates than students in the feedback-only group (n = 22). Interviews also showed that students in the advice group appreciated the supervision meeting more and perceived them as more effective than students in the feedback-only group. Guidelines are provided for the use of development portfolios and the organization of supervision meetings in on-demand vocational education.
Wendy KickenEmail:
  相似文献   

18.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

19.
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen’s d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students’ learning experience.  相似文献   

20.
The complexity of the material being taught in clinical neuroscience within the medical school curriculum requires creative pedagogies to teach medical students effectively. Many clinical teaching strategies have been developed and are well described to address these challenges. However, only a few have been evaluated to determine their impact on the performance of students studying clinical neuroscience. Interactive, 2‐hour, self‐directed small‐group interactive clinical case‐based learning sessions were conducted weekly for 4 weeks to integrate concepts learned in the corresponding didactic lectures. Students in the small groups analyzed cases of patients suffering from neurological disease that were based on eight learning objectives that allowed them to evaluate neuroanatomical data and clinical findings before presenting their case analysis to the larger group. Students’ performances on the formative quizzes and summative tests were compared to those of first‐year medical students in the previous year for whom the self‐directed, small‐group interactive clinical sessions were not available. There was a significant improvement in the summative performance of first‐year medical students with self‐directed clinical case learning in the second year (Y2) of teaching clinical neuroscience (P < 0.05) when compared with first‐year students in the first year (Y1) for whom the self‐directed learning approach was not available. Student performance in the formative assessments between Y1 and Y2 was not significantly different (P = 0.803). A target of ≥70% student scoring above 80% in the final summative examination was met. The current study revealed evidence for the impact and educational outcomes of a self‐directed, clinical teaching strategy in a clinical neuroscience curriculum for first‐year medical students. Anat Sci Educ 11: 478–487. © 2017 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号