首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
79.已知a、b、c∈R ,且abc=8,求aabbcc的最小值.(湖南省武冈市十中422400邓集春提供)80.设a,b>0,求证:当λ>2,有$a aλb, $b bλa,≤λ,$λ2-1.(浙江省湖州市双林中学313012李建潮提供)81.若a、b、c、d为正实数,且a3 b3 c3 d3=4,能否确定23(ab bc cd da ac bd)与abc bcd cda dab的大小,若能,请写出大小关系并证明,若不能,请举出反例.(湖南长沙市十五中410007厉倩提供)82.已知a,b,c为正数,求证:b ac c ba a cb≥32 (a-b)22(a b c)2.(江西南昌大学附属中学330047宋庆提供)83.设AD、BE、CF是△ABC的内角平分线,且∠BAC=120°,连接DE、DF…  相似文献   

2.
题目 已知a,b,c∈R,a+2b+3c=6,则a2+ 4b2+ 9c2的最小值为____. 解法1 由柯西不等式得(a2 +4b2+ 9c2)(12+12+ 12)≥(a+2b+3c)2, 所以3(a2+ 4b2+ 9c2)≥36, 所以a2+ 4b2+ 9c2≥12,当a/1=2b/1=3c/1且a+2b+3c=6,即a=2,b=l,c=2/3时取得最小值.  相似文献   

3.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

4.
<正>文[1]对一道不等式问题作研究,文末留下未解决问题,本文将给出该问题的结论.问题已知a、b、c≥0,a+b+c=1,研究fλ(a,b,c)=a2+b2+c2+λabc,(λ∈R)的最值.首先给出如下命题:命题1(最大值情形):fλ(a,b,c)≤max{λ+9/27,1}.  相似文献   

5.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

6.
本期问题 初343已知x、y为正实数,n∈N,且n≥2.证明: n√x+(2n-1)y/x+n√y+(2n-1)x/y≥4. 初344 在边长为2的正方形ABCD中,动点E、F均在边AD上,满足AE=DF,联结CF与对角线BD交于点Q,联结AQ、BE交于点P.求DP的最小值. 高343设a、b、c>0,且abc=1,λ(λ≥1)为常数.证明:a1/a+b+λ+1/b+c+λ+1/ρ+δ+λ≤3/2+,当且仅当a=b=c=1时,上式等号成立.  相似文献   

7.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

8.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

9.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

10.
判别式的应用广泛,但也容易出错,请看:例1 若a b c=0,abc=2,c>0.求证:c≥2.证明因为a b c=0,abc=2,所以a≠0,x=1是方程ax2 cx b=0的一个根,因为x=1∈R,所以△=c2-4ab≥0.  相似文献   

11.
题 1 已知 a,b,c∈ R ,且 abc≤ 1 ,求证 :a bc b ca c ab ≥ 2 ( a b c) .(《数学通报》1 999年第 1期问题 1 1 71 )该题型新颖独特 ,其证法亦不多见 .贵刊仅在文 [1 ]中给出了一种证法 ,现笔者应用基本不等式简证如下 .证明 原式成立 a b c- c( a b c) c a b c- a( a b c) a a b c- b( a c) b≥ 2 . 1a 1b 1c- 3a b c≥ 2 . ( * )∵ 1a 1b 1c- 3a b c≥ 33abc- 13abc=23abc≥ 2 .(∵ 3a b c≤ 13abc)∴ ( * )成立 ,故原式证毕 .题 2 若 a,b,c∈ R ,abc=1 ,则aba3n 2 b3n 2 ab bcb3n 2 c3n…  相似文献   

12.
文[1]给出了数学奥林匹克司题高229题:"已知a,b,c∈R+,abc=1,求证:1/a+1/b+1/c+3/a+b+c≥4"的简证后,又将之推广为:"已知a,b,c∈R_+,abc=1,0<λ<9/2,则1/a+1/b+1/c+λ/a+b+c≥3+λ/3"·笔者探究发现,该推广对λ=9/2也成立,而且从λ=9/2入手证明之更加简便.现介绍于后,以供参考.  相似文献   

13.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

14.
均值不等式是指课本中的不等式:①若a、b∈R,则a2 b≥ab;②若a、b、c∈R ,则a 3b c≥3abc.那么,在运用它们求最值时,必须满足“一正、二定、三相等”这三个基本条件,但在具体的问题中,这些条件往往不全满足,这时,就必须对式子作一定的恒等变形,使它同时满足这三个条件,现将恒等变形的常见方法与技巧归纳如下:一、拆项法【例1】若x>0,求函数y=x2 2x 1x4的最小值.解:∵x>0且x2 2x 1x4=x2 1x6=x2 8x 8x,∴y=x2 8x 8x≥33x2·8x·8x=12.故当且仅当x2=8x,即x=2时,ymin=12.二、添项减项法【例2】已知a≥b>0,求y=a (2a4-b)b的最小值.解:∵a≥b>2b>…  相似文献   

15.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

16.
几道数学竞赛题的简解   总被引:1,自引:0,他引:1  
题1设a、b、c为正实数,且a2 b2 c2 abc=4.证明:3abc≤ab bc ac≤abc 2.(第30届美国数学奥林匹克)证明:由4=a2 b2 c2 abc≥abc 3(abc)32,即abc≤1可知ab ac bc≥3(abc)32≥3abc.由题设知,a、b、c中一定有且只有两个数或者都不大于1,或者都不小于1.不妨设这两个数为a、b.则c(a-1)  相似文献   

17.
结论 1 若Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,则函数 f(x) =x2 ax b x2 cx d的最小值是 f(x) min=12 (-Δ1 -Δ2 ) 2 (a -c) 2 .证明 :因为Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,所以x2 ax b≥ 0 ,x2 cx d≥ 0 ,f(x) =x2 ax b x2 cx d =x a22 0 - 4b -a222 x c22 0 - 4d -c222 .求 f(x)的最小值即求两定点A - a2 ,4b -a22 、B - c2 ,4d -c22 到x轴上一点 (x ,0 )距离和的最小值 ,即求两点A′ - a2 ,- 4b -a22 、B - c2 ,4d -c22 之距 |A′B|.点A′与A关于x轴对称 .根据对称性 |A′B|=|PA| |PB|,在x轴上任取一点…  相似文献   

18.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

19.
题目 已知a、b、c为正实数.证明:a2 b2 c2 abc=4a b c≤3.(第20届伊朗数学奥林匹克(第2轮))文[1]利用三角法给出了证明,本文给出一种代数证明.证明:若a、b、c都大于1,或者都小于1,显然不满足题设条件.因此,a、b、c中一定有两个或者都不大于1,或者都不小于1,不妨设为a、b.则(1-a)(1-b)≥0,即 ab≥a b-1.①由a2 b2≥2ab,有4=a2 b2 c2 abc≥2ab c2 abc,即 ab(2 c)≤4-c2.于是,ab≤2-c.②由①、②,有a b c≤3.一道赛题的简证@羊明亮$湖南师范大学附属中学广益高中!410081[1] 第20届伊朗数学奥林匹克(2002—2003)[J].中等数学2004增刊.70.…  相似文献   

20.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号