首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Polarization-sensitive photodetection is central to optics applications and has been successfully demonstrated in photodetectors of two-dimensional (2D) materials, such as layered hybrid perovskites; however, achieving high polarization sensitivity in such a photodetector remains extremely challenging. Here, for the first time, we demonstrate a high-performance polarization-sensitive photodetector using single-crystalline 2D/3D perovskite heterostructure, namely, (4-AMP)(MA)2Pb3Br10/MAPbBr3 (MA = methylammonium; 4-AMP = 4-(aminomethyl)piperidinium), which exhibits ultrahigh polarization sensitivity up to 17.6 under self-driven mode. To our knowledge, such a high polarization selectivity has surpassed all of the reported perovskite-based devices, and is comparable to, or even better than, the traditional inorganic heterostructure-based photodetectors. Further studies reveal that the built-in electric field formed at the junction can spatially separate the photogenerated electrons and holes, reducing their recombination rate and thus enhancing the performance for polarization-sensitive photodetection. This work provides a new source of polarization-sensitive materials and insights into designing novel optoelectronic devices.  相似文献   

2.
Ultrathin two-dimensional (2D) materials have attracted considerable attention for their unique physicochemical properties and promising applications; however, preparation of freestanding ultrathin 2D noble metal remains a significant challenge. Here, for the first time, we report use of a wet-chemical method to synthesize partially hydroxylated ultrathin Ir nanosheets (Ir-NSs) of only five to six atomic layers’ thickness. Detailed analysis indicates that the growth confinement effect of carbon monoxide and the partially hydroxylated surface play a critical role in formation of the ultrathin structure. The ultrathin Ir-NSs exhibit excellent performance for both the hydrogen evolution reaction and oxygen evolution reaction in a wide pH range, outperforming the state-of-the-art Pt/C and IrO2, respectively. Density-functional theory calculations reveal that the partial hydroxylation not only enhances the surface electron transfer between Ir-sites and intermediate O-species, but also guarantees efficient initial activation of bond cleavage of H-O-H for first-step H2O splitting. This, ultimately, breaks through barriers to full water splitting, with efficient electron transfer essentially maintained.  相似文献   

3.
The scalable and high-efficiency production of 2D materials is a prerequisite to their commercial use. Currently, only graphene and graphene oxide can be produced on a ton scale, and the inability to produce other 2D materials on such a large scale hinders their technological applications. Here we report a grinding exfoliation method that uses micro-particles as force intermediates to resolve applied compressive forces into a multitude of small shear forces, inducing the highly efficient exfoliation of layer materials. The method, referred to as intermediate-assisted grinding exfoliation (iMAGE), can be used for the large-scale production of many 2D materials. As an example, we have exfoliated bulk h-BN into 2D h-BN with large flake sizes, high quality and structural integrity, with a high exfoliation yield of 67%, a high production rate of 0.3 g h−1 and a low energy consumption of 3.01 × 106 J g−1. The production rate and energy consumption are one to two orders of magnitude better than previous results. Besides h-BN, this iMAGE technology has been used to exfoliate various layer materials such as graphite, black phosphorus, transition metal dichalcogenides, and metal oxides, proving its universality. Molybdenite concentrate, a natural low-cost and abundant mineral, was used as a demo for the large-scale exfoliation production of 2D MoS2 flakes. Our work indicates the huge potential of the iMAGE method to produce large amounts of various 2D materials, which paves the way for their commercial application.  相似文献   

4.
近年来,以石墨烯为代表的2维原子晶体材料因其独特的2维结构、丰富而新奇的物理化学性质与广阔的应用前景,迅速成为凝聚态物理与材料科学领域的研究前沿。本文概要地介绍了石墨烯的制备、石墨烯的物理与物性、石墨烯的可能应用及其他2维原子晶体材料的研究进展,并对2维原子晶体材料的未来发展趋势进行了分析与讨论。  相似文献   

5.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3–(x)CaTiO3 (BTFM–CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7–3.0 × 10−7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM–CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.  相似文献   

6.
As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth''s core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as ‘OE-phase’). It forms at pressures greater than 40 gigapascal when (Mg, Fe)-bearing hydrous materials are heated over 1500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1000 km in the Earth''s mantle. The emergence of oxygen-excess reservoirs out of primordial or subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.  相似文献   

7.
Charmonium is a bound state of a charmed quark and a charmed antiquark, and a charmoniumlike state is a resonant structure that contains a charmed quark and antiquark pair but has properties that are incompatible with a conventional charmonium state. While operating at center-of-mass energies from 2 to 5 GeV, the BESIII experiment can access a wide mass range of charmonium and charmoniumlike states, and has contributed significantly in this field. We review BESIII results involving conventional charmonium states, including the first observation of the M1 transition ψ(2S) → γηc(2S) and the discovery of the ψ2(3823) state; and report on studies of charmoniumlike states, including the discoveries of the Zc(3900) and Zc(4020) tetraquark candidates, the resolution of the fine structure of the Y(4260) state, the discovery of the new production process e+e → γX(3872) and the uncovering of strong evidence for the commonality among the X(3872), Y(4260) and Zc(3900) states. The prospects for further research at BESIII and proposed future facilities are also presented.  相似文献   

8.
A series of ternary organic photovoltaics (OPVs) are fabricated with one wide bandgap polymer D18-Cl as donor, and well compatible Y6 and Y6-1O as acceptor. The open-circuit-voltage (VOC) of ternary OPVs is monotonously increased along with the incorporation of Y6-1O, indicating that the alloy state should be formed between Y6 and Y6-1O due to their excellent compatibility. The energy loss can be minimized by incorporating Y6-1O, leading to the VOC improvement of ternary OPVs. By finely adjusting the Y6-1O content, a power conversion efficiency of 17.91% is achieved in the optimal ternary OPVs with 30 wt% Y6-1O in acceptors, resulting from synchronously improved short-circuit-current density (JSC) of 25.87 mA cm−2, fill factor (FF) of 76.92% and VOC of 0.900 V in comparison with those of D18-Cl : Y6 binary OPVs. The JSC and FF improvement of ternary OPVs should be ascribed to comprehensively optimal photon harvesting, exciton dissociation and charge transport in ternary active layers. The more efficient charge separation and transport process in ternary active layers can be confirmed by the magneto-photocurrent and impedance spectroscopy experimental results, respectively. This work provides new insight into constructing highly efficient ternary OPVs with well compatible Y6 and its derivative as acceptor.  相似文献   

9.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.  相似文献   

10.
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position.  相似文献   

11.
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g−1 at 0.1 A g−1, excellent rate capability up to 5.0 A g−1 and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g−1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnP2O7@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.  相似文献   

12.
Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.  相似文献   

13.
Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.  相似文献   

14.
BackgroundFor more than a decade, water-soluble, eco-friendly, biocompatible, and low-toxicity fluorescent nanomaterials have received considerable attention for their numerous in vivo and in vitro applications in biomedical imaging, disease diagnostics, and environmental monitoring. Owing to their tunable photoluminescence properties, carbon-based luminescent nanomaterials have shown great potential in bioimaging, photocatalysis, and biosensing among other applications.ResultsMarine environments provide excellent resources for the fabrication of these nanomaterials, because many marine organisms contain interesting trigger organic compounds that can be used as precursors. Herein, we synthesize multi-color emissive carbon dots (CDs) with an intrinsic photoluminescence quantum yield of 20.46%. These nanostructures were achieved through the one-step hydrothermal treatment of marine polysaccharide chondroitin sulfate, obtained from shark cartilage, in aqueous solution.ConclusionsWe successfully demonstrate the low toxicity of our marine resource-derived CDs in zebrafish, and provide an initial assessment of their possible use as a bioimaging agent. Notably, the newly synthesized CDs localize in the intestines of zebrafish larvae, thereby indicating their biocompatibility and potential use as in vivo dyes.How to cite: Kim KW, Choi TY, Kwon YM, et al. Simple synthesis of photoluminescent carbon dots from a marine polysaccharide found in shark cartilage. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.003.  相似文献   

15.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

16.
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with the minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/STS) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, and thickness- and angular-dependent transport measurements reveal that the detected superconductivity is quasi-1D and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.  相似文献   

17.
Discrete-scale invariance (DSI) is a phenomenon featuring intriguing log-periodicity that can be rarely observed in quantum systems. Here, we report the log-periodic quantum oscillations in the longitudinal magnetoresistivity (ρxx) and the Hall traces (ρyx) of HfTe5 crystals, which reveal the DSI in the transport-coefficients matrix. The oscillations in ρxx and ρyx show the consistent logB-periodicity with a phase shift. The finding of the logB oscillations in the Hall resistance supports the physical mechanism as a general quantum effect originating from the resonant scattering. Combined with theoretical simulations, we further clarify the origin of the log-periodic oscillations and the DSI in the topological materials. This work evidences the universality of the DSI in the Dirac materials and provides indispensable information for a full understanding of this novel phenomenon.  相似文献   

18.
Let χm+1=T(χm) or even χm+1=T(χm,χm?1, …, χm?q), m=1,2,3 … be an iteration method for solving the nonlinear problem F(χ)=0, where F(χ) and its derivatives possess all of the properties required by T(χm). Then if it can be established that for the problem at hand ∥F(χm+1)∥?βm∥F(χm)∥, ? m > M0 (M0<∞) and 0?βm<1 , definitions are established and theorems proven concerning convergence, uniqueness and bounds on the error after ‘m’ successive iterations of a new approach to convergence properties T(χm). These charateristics are referred to as “alternate” (local, global) convergence properties and none of the proofs given are restricted to any specific type of method such as, e.g. contraction mapping types. Application of results obtained are illustrated using Newton's method as well as the general concept of Newton-like methods.  相似文献   

19.
Materials of nanoscale size exhibit properties that macroscopic materials often do not have. The same holds for bubbles on the nanoscale: nanoscale gaseous domains on a solid-liquid interface have surprising properties. These include the shape, the long life time, and even superstability. Such so-called surface nanobubbles may have wide applications. This prospective article covers the basic properties of surface nanobubbles and gives several examples of potential nanobubble applications in nanomaterials and nanodevices. For example, nanobubbles can be used as templates or nanostructures in surface functionalization. The nanobubbles produced in situ in a microfluidic system can even induce an autonomous motion of the nanoparticles on which they form. Their formation also has implications for the fluid transport in narrow channels in which they form.  相似文献   

20.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号