首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
应用张角公式求三线段的连比值,不仅富有新意、相当有效,而且能够化难为易、变繁为简.现以几道初中几何题为例,介绍这种创新的解法如下,供教师参考.一、张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为α、β,则(sin(α+β))/(PC)=(sinα)/(PB)+(sinβ)/(PA).证明:因为S△PAB=S△PAC+S△PCB,所以1/2PA·PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

2.
1.张角公式如图1,设直线ACB外一点P对于线段AC、CB的张角分别为αβ,则sin(α+β)/PC=sinα/PB+sinβ/PA证明:因为S△PAB=S△PAC+ S4PCB,所以1/2PA.PB·sin(α+β)=1/2PA·PC·sinα+1/2PC·PB·sinβ,两边同除以1/2PA·PB·PC,即得所证等式.  相似文献   

3.
本文现将张角公式及其在数学竞赛解题中的应用介绍如下: 一、张角公式如图,设直线ACB外一视点P,对于线段AC、CB的张角分别为α、β,且α β<180°,则sin(α β)/PC=sinα/PB sinβ/PA 证明:∵△PAB=△PAC △PCB,∴1/2PA·PB·sin(α β)-1/2PA·PC·sinα 1/2PC ·PBsinβ。∴两边同除以1/2PA·PB·PC,即得欲证式。二、应用举例例1 连结正△ABC的外接圆劣弧AB上一点P的线段CP交AB于D,求证:1/PA 1/PB=1/PD(1990年山西省初中数学  相似文献   

4.
平面几何中有一个与面积关系有关的张角公式,一般不引人注目。但在教学时,却发现张角公式能帮助解决许多几何题,有的还是典型的难题。现分两方面介绍如下,供初中数学教师教学时参考。一、张角公式已知由点P发出的三射线PA、PB、PC;且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是: sin(α β)/PC=sinα/PB sinβ/PA 证明:若A、B、C三点共线, 则△PAB=△PAC △PCB 故 1/2PA·PBsin(α β)=1/2PA·sinα 1/2PB·PCsinβ两边同除以1/2PA·PB·PC,即得所欲证的等式。反之,若命题中等式成立,则反推可得: △PAB=△PAC △PCB。这说明△ABC=|△PAB-△PAC-△PCB|=0,所以A、B、C三点共线。  相似文献   

5.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

6.
用三弦定理解竞赛题   总被引:1,自引:0,他引:1  
由笔者提出并命名的三弦定理是:如图1,已知PA、PB、PC 是⊙O 的三条弦,记∠APB=α,∠PBC=β,则 PB·sin(α β)=PC·sinα PA·sinβ.证明:设⊙O 的半径为 R,连结 AB、BC、AC,则 AC=2R·sin(α β),AB=2R·sinα,BC=2R·sinβ.由托勒密定理,得 PB·AC=PC·AB PA·BC.将上面三个等式代入此式,得PB·sin(α β)=PC·sinα PA·sinβ.  相似文献   

7.
一、张角公式 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α+β〈180°,那么 A、B、C三点在一直线上的充要条件是sin(α+β)/PC=sinα/PB+sinβ/PA.  相似文献   

8.
定理设A,B,C顺次分别是平面内一点P所引的三条射线PA,PB,PC上的点,线段AC,CB对点P的张角分别为α,β,且α+β<180°,则A,C,B三点共线的充要条件是sin(α+β)/PC=sinα/PB+sinβ/PA.  相似文献   

9.
三点共线定理是指:如图1,若∠BAD=α,∠CAD=β,AB=a,AC=b,AD=m,那么,B、D、C三点共线的充要条件是。 sin(α+β)/m=sinβ/a+sinα/b。证明:∵B、D、′C三点共线的充要条件是 S_(△ABC)=S_(△ABD)+S_(△ADC)(?)1/2ab sin(α+β) =1/2am sinα+1/2bm sinβ(?)sin(α+β)/m =sinβ/a+sinα/b。证毕。有些几何问题采用上述定理求解,大有以简驭繁,化难为易,新颖轻巧,别有奇妙之效。下面试举  相似文献   

10.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等. 证明:如图1,记∠AOB=α,△AOB、△COD△AOD、△BOC的面积分别为S_1、S_2、S_3、S_4,则由三角形面积公式有S_1·S_2=1/2AO·BO·sinα·1/2CO·DO·sinα,S_3·S_4=1/2AO·DO·sin(180°-α)·1/2BO·CO·sin(180°-α)故得,S_1·S_2=S_3·S_4。  相似文献   

11.
1.定理 如图1,由点P发出的三射线PA、PB、PC,且∠APC=α,∠CPB=β,∠APB=α β<180°,那么A、B、C三点在一直线上的充要条件是 证明 必要性:若A、B、C三点共线,则 S△PAB=S△PAC S△PCB,因此两边同除以1/2PA·PB·PC,即得所欲证的等式.  相似文献   

12.
本文在这里向读者介绍一个与面积有关的几何命题.定理由点 P 发出的三射线 PA、PB、PC,设L、M、N 分别在射线 PA、PB、PC 上,使得 PL/PA=λ_1,PM/PB=λ_2,PN/PC=λ_3(图1).则 L、M、N 三点共线的充要条件为S_(△PBC) S_(△PAB)  相似文献   

13.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

14.
本文借助于向量的数量积给出平面任意四边形的一组新面积公式,并举例介绍其应用.引理1对平面任意四边形ABCD,有SABCD=12AC·BD·sinα(其中,α是对角线AC、BD所成的角)图1证明:(1)如图1,若四边形ABCD是凸四边形,则SABCD=S△PAB S△PBC S△PCD S△PDA=12PA·PB·sin∠APB 12PB·  相似文献   

15.
北师大版高中数学必修5(2007年5月第3版,2009年7月第3次印刷)第2章“解三角形”,其中的第2节“三角形中的几何计算”的习题2-2B组题第1题,题目如下: 如图1,有3点A,B,C,点C在点A与点B之间,点P是此直线外一点,设∠APC=α,∠BPC=β,求证 sin(α+β)/PC=siα/PB+sinβ/PA.  相似文献   

16.
全日制初中几何第二册总复习题24题:经过∠XOY的平分线上一点A,任作一直线与OX,OY分别相交于P,Q,求证:1/OP 1/OQ等于定值。证明:如图,∵S_(△OPQ)=1/2OP·OQ·Sin2α=OP·OQ·sinαcosα。 S_(△OAQ)=1/2OA·  相似文献   

17.
四面体是特殊的棱锥,其体积公式有多种,其中之一为:如图,设四面体 A—BCD中,S_(△ABC)=S_1,S_(△BCD)=S_2,二面角 A-BC-D=α,BC=l,则体积 V=(2S_1S_2)/(3l)sinα(*)利用锥体的体积公式不难证明.我们感兴趣的是利用体  相似文献   

18.
命题 若P是△ABC内的一点 ,记△BPC、△APC、△APB的面积为SA 、SB 、SC ,则SA ·PA SB ·PB SC ·PC =0 .证明 延长AP与BC边相交于D点 ,则|BD||DC| =S△ABDS△ACD=S△BPDS△PCD=-S△BPD-S△PCD等比定理 SCSB.记|BD||DC|=λ ,有BD=λDC ,所以PD- PB=λ( PC- PD) ,所以 - ( 1 λ) ·PD PB λPC=0 .又因为PD =- |PD||PA| · PA =-SASB SC·PA ,所以 SASB SC( 1 SCSB) ·PA PB SCSB ·PC=0 ,所以SA·PA SB·PB SC·PC =0 .推论 1 当P为△ABC的内心时 ,有sin…  相似文献   

19.
<正>面积问题是几何中常见的问题之一,一般都会转化为三角形的面积来求,本文就来谈谈这类问题的解法。例1在△ABC中,AB=4cm,AC=3cm,∠BAC的角平分线AD=2cm,求此三角形的面积。解:如图1,在△ABC中,设∠BAC=α,S_(△ABC)=S_(△ADC)+S_(△ADB)。所以1/2AB·AC·sinα=1/2AC·  相似文献   

20.
有这样一道习题:已知sin2a+sinβ+cos(α-β)=2,求sina+sinβ的取值范围. 错解:令u=sinα+sinβ,则u2=sin2α+sin2β+2sinαsinβ又sin2α+sin2β+cos(α-β)=2,所以U2-2=2sinαsinβ-cos(α-β)=-cos(α+β).u2=2-cos(α+β),从而1≤u2≤3,解得-3~(1/2)≤u≤一1或1≤u≤3~(1/2). 这个答案看起来似乎简洁明了,分析透彻,但细细分析便会产生这样的疑问,即cos(α+β)能取[一1,1]上的所有值吗?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号