首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethene/norbornene copolymerization by the catalyst system [Me2Si(3-tertBuCp)(NtertBu)]TiCl2/MAO was investigated in detail at 30℃, 60℃, and 90℃. A mass flow controller was used in this work to obtain kinetic data and investigate temperature's effects on activity, norbornene incorporation, copolymerization parameter, microstructure, glass transition temperature, and molar masses were described. High copolymerization values rE and high alternation are determined. The number of isotactic alternating sequences is much higher than that of the syndiotactic alternating sequences.  相似文献   

2.
Ethylene/1-hexene was copolymerized by an unbridged zirconocene, (2-PhInd)2ZrCl2/MAO (methyl aluminoxane) at 0°C and 50°C respectively. High copolymerization activity and 1-hexene incorporation were observed at 0°C, with the copolymer formed having random sequence distribution and narrow molecular weight distribution. Ethylene polymerization at 50°C showed high activity, but copolymerization at 50°C showed much lower activity, which decreased sharply with increasing 1-hexene concentration in the monomer feed. Copolymer formed at 50°C showed blocky sequence distribution and broad molecular weight distribution. A mechanism model based on ligand rotation hindered by the propagation chain has been proposed to qualitatively explain the observed phenomena. Project (Nos. 29734144 and 20274037) supported by the National Natural Science Foundation of China  相似文献   

3.
Nanometer-sized SnO2 particles were prepared by a sol-gel method using inorganic salt as a precursor material. Its crystallization was investigated by means of TG-DTA, IR absorption spectra, X-ray diffractometry and TEM as well as its resistivity change and the gas sensitivity varied with temperature were measured in various reducing gas. The results indicate that well-crystallized nano-sized SnO2 with size around 15nm can be obtained at annealing temperature 600°C. The activation energy for the growth of nano-SnO2 was calculated to be 26. 55kJ. mol−1 when the annealing temperature was higher than 500°C. The measurements also show that there is a peculiar resistance change varied with temperature for nano-SnO2. It has relevance to the increase in surface adsorbed oxygen. The selective detectivities to C4H10 and petrol can be increased when ruthenium ion was doped in nano-SnO2 as a catalyst and so do the gas sensitivity to CO, CH4, H2 etc. when rhodium ion was doped in. The detection to the several reducing gas can be realized when the temperature ranged from 260°C to 400°C.  相似文献   

4.
SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.  相似文献   

5.
N-valeronitrile-N’-methylimidazolium hexafluorophosphate ([C 4 CNmim]+ PF 6),as a novel ionic liquid with polar nitrile functional group,was prepared.The structure of the ionic liquid was characterized by using IR and 1 H NMR.As a medium,the ionic liquid plays an important role in copolymerization of carbon monoxide (CO) with styrene (St).Some synthetic conditions were determined,including the usage of ionic liquid,palladium composite catalyst and methanol,CO pressure,reaction time and reaction temperature.The influence of these factors on catalytic activity was analyzed.The results show that the catalytic activity has reached 1 724.1 gStCO/(gPd·h) and the catalyst could be reused 5 times under the optimal condition:composite catalyst 0.015 mmol,ionic liquid 3 mL,methanol 0.75 mL,CO pressure 2MPa,reaction time 2 h and reaction temperature 70℃.This CO/St copolymerization within [C 4 CNmim]+ PF 6 system could facilitate ionic liquids with efficient and economical applications to polymeric materials.  相似文献   

6.
(K0.47Na0.47Li0.06)NbO3 (KNLN) lead-free ceramics were prepared by molten salt synthesis (MSS) method using k2CO3-Na2CO3 eutectic mixtures as the flux. The microstructure and piezoelectric properties when sintered at 980-1 030 ℃ were investigated. The calcined powders were examined by X-ray diffraction. The microstructure of the calcined powders and sintered bodies was observed using a scanning electron microscope (SEM).The piezoelectric constant d33 was measured using a quasi-static piezoelectric d33 meter. The planar coupling coefficient Kp was calculated by resonance-antiresonance method. The experimental data for each sample's performance indicators were the average values of 8 specimens. The relative densities of sintered specimens are above 97%, and the dielectric loss is below 0.03. It was found that (K0.47Na0.47Li0.06)NbO3 prepared by MSS is compact and lead-free. The piezoelectric constant d33 is 216 pC·N-1 and the planar electromechanical coupling factor Kp is 0.352.  相似文献   

7.
A straight, non-sporulating, Gram-variable bacillus (HKU24T) was recovered from the blood culture of a patient with metastatic breast carcinoma. After repeated subculturing in BACTEC Plus Anaerobic/F blood culture broth, HKU24T grew on brucella agar as non-hemolytic, pinpoint colonies after 96 h of incubation at 37 °C in an anaerobic environment and aerobic environment with 5% CO2. Growth was enhanced with a streak of Staphylococcus aureus. HKU24T was non-motile and catalase-negative, but positive for alkaline phosphatase, β-glucosidase, and α-glucosidase. It hydrolyzed phenylphosphonate and reduced resazurin. 16S rRNA, groEL, gyrB, recA, and rpoB sequencing showed that HKU24T occupies a distinct phylogenetic position among the Leptotrichia species, being most closely related to Leptotrichia trevisanii. Using HKU24T groEL, gyrB, recA, and rpoB gene-specific primers, fragments of these genes were amplified from one of 20 oral specimens. Based on phenotypic and genotypic characteristics, we propose a new species, Leptotrichia hongkongensis sp. nov., to describe this bacterium.  相似文献   

8.
With InCl3·4H2O being used as raw materials, the precursor of nano-sized In2O3 powder was prepared by hydrolysis, peptization and gelation of InCl3·4H2O. After calcination, nano-sized In2O3 powder was obtained. The powder was characterized by thermo-gravimetric and differential thermal analysis (TG-DTA), X-ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively. Calculation revealed that the mean crystalline size increased with increasing the calcination temperature, but crystal lattice distortion rate decreased with the increasing in the average crystalline size. This indicated that the smaller the particle size, the bigger the crystal lattice distortion, the worse the crystal growing. The activation energies for growth of nano-sized In2O3 were calculated to be 4.75 kJ·mol−1 at the calcination temperature up to 500°C; and 66.40 kJ·mol−1 at the calcination temperature over 600°C. TEM photos revealed that the addition of the chemical additive (OP-10) greatly influenced the morphology and size of In2O3 particles.  相似文献   

9.
TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 ℃. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron micros- copy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m^2/g and 148 m^2/g for samples deposited at 100 ℃ and 200℃ (using ACFI700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.  相似文献   

10.
β-glucanase was purified from a solid-state culture ofTrichoderma reesei on wheat bran in three steps which comprised ammonium sulfate precipitation, Sephadex G-100 chromatography, and DEAE-Sephadex A-50 chromatography. The molecular mass was determined to be 35.21 kilodaltons by sodium dodecyl sulfate-12.5% polyacrylamide gel electrophoresis. The β-glucanase at low pHs was more stable than that at high pHs, and optimum pH was 5.0. The optimum temperature was 60°C, and β-glucanase was relatively stable at below 40°C for 60 min. TheK m of the enzyme on β-glucan was 10.86 mg/ml, and theV max on β-glucan was 14286 μmol of glucose equivalents per mg of the pure enzyme per min. The β-glucanase activity was significantly inhibited by Fe3+ ions, and was reduced in the presence of Cu2+ ions, Mn2+ ions and Mg2+ ions at 5 mmol/L and 10 mmol/L, respectively. The β-glucanase activity was stimulated by Co2+ ions, Ca2+ ions, Zn2+ ions, and Fe2+ ions at 1 mmol/L and 5 mmol/L, respectively. Project supported by Foundation for University Key Teacher of the State Ministry of Education, the National Natural Science Foundation of China (No. 30000118) and Zhejiang Provincial Natural Science Foundation of China (No. 399409).  相似文献   

11.
INTRODUCTION Nitrogen oxide (NOx) is one of the main air pol- lutants found in the flue gases from chemical and power plants belching acid rain and photochemical smog. Over 90 percent of all man-made nitrogen ox- ides that enter our atmosphere are produced by the combustion of various fuels. Compared with the ad- vanced stage of SO2 gas removal technologies devel- opment, the removal of NOx gases is still in the initial stages of development as roughly 90 to 95 percent of NOx emitted i…  相似文献   

12.
The copolymerization of CO and styrene catalyzed by Pd/C toward the formation of polyketones(PK)was studied in the N-valeronitrile-N'-methylimidazolium hexafluorophosphate([C4CNmim]+PF-6) medium. The synthesized PK was characterized by Fourier transform infrared(FTIR), elemental analysis, 13C-nuclear magnetic resonance(13C-NMR), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA) and gel permeation chromatography(GPC). The supported ionic liquid film on the surface of Pd/C catalyst can prevent the products from covering the hole of active carbon due to its chemical stability and weak coordination ability with metal ions, and thus efficiently improve the catalytic activity. The effects of different amounts of ionic liquid on the catalytic activity and reusability of the catalyst and the molecular weight of PK were discussed. When the usage of ionic liquid is 10wt%(0.1 g ionic liquid / 1 g active carbon carrier) and the theoretical content of Pd2+ is 5wt%(0.05 g Pd2+/ 1 g active carbon carrier), the highest catalytic activity 2 963.64 gSTCO/(gPd·h) is achieved with the molecular weight and polydispersity index of PK as Mn=9 684, Mw=13 452 and Mw /Mn=1.389.  相似文献   

13.
Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis strain (AS 1.439) from Ming lake were decomposed by photocatalytic nanostructure N-TiO2 thin films in a photo-reactor under UV irradiation. The different thickness nanostructure N-TiO2 thin films coated on mesh grid were prepared by sol-gel method and immobilized at 500 ℃ (films A) or 350 ℃ (films B) for 1 h in a muffle furnace. The results showed that N-TiO2 thin film B (8.18 nm thickness, 2.760 nm height and 25.15 nm diameter) has more uniform granular nanostructure and thinner flat texture than N-TiO2 thin film A (12.17 nm thickness, 3.578 nm height and 27.50 nm diameter). The bactericidal action of N-TiO2 thin film A and film B for Pseudomonas aeruginosa strain (AS 1.50) and Bacillus subtilis varniger strain (AS1.439) were investigated in this work. More than 95% of photocatalytic bactericidal efficiency for Pseudomonas aeruginosa strain (AS 1.50) and 75% for Bacillus subtilis strain (AS 1.439) were achieved by using N-TiO2 thin films-B for 70-80 rain of irradiation during the photo-bactericidal experimental process. The results indicated that the photo-induced bactericidal efficiency of N-TiO2 thin films probably depended on the characteristics of the films.  相似文献   

14.
In this study, we used a simple impregnation method to prepare Fe–Ce–O x catalysts and tested them regarding their low-temperature (200–300 °C) selective catalytic reduction (SCR) of NO using NH3. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO2/H2O resistance of the catalysts. The results showed that the FeCe(1:6)O x (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O x catalyst had the highest NO conversion with an activity of 94–99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h?1. The NO conversion for the FeCe(1:6)O x catalyst also reached 80–98% between 200 and 300 °C at a space velocity of 204,000 h?1. In addition, the FeCe(1:6)O x catalyst demonstrated good stability in a 10-h SCR reaction at 200–300 °C. Even in the presence of SO2 and H2O, the FeCe(1:6)O x catalyst exhibited good SCR performance.  相似文献   

15.
A new supported amorphous catalyst CoP/TiO2 was prepared by chemical reduction and characterized by ICP, XRD, TEM, BET and DSC Its application in decomposing PH3 to high purity phosphor and its catalytic activity were studied. The decomposition rate is over 95% at 450 ℃. For comparison, unsupported CoP amorphous catalyst was prepared by the same method. The result suggests that CoP/TiO2 exhibits higher thermal stability and catalytic activity than CoP, which is attributed to the high dispersion of CoP alloy particles on the support-TiO2.  相似文献   

16.
Single crystal Ga x In1−x As films have grown up on GaAs(100) substrate at 375°C and on InP(100) substrate at 390°C, respectively, by the method of rf-sputtering with using undoped GalnAs polycrystal as target. However, on Si(100) or Si(111) substrates at 260–390°C, even at 465°C, only polycrystalline films were obtained. In addition, the structure, composition, electrical characteristic and optical properties of the Ga x In1−x As films were investigated using X-ray diffraction (XRD), reflection of high energy electron diffraction (RHEED), energy dispersion analyzer of X-ray (EDAX), Hall measurements and spectroscopic ellipsometry.  相似文献   

17.
Transgenic Brassica compestris L.spp.chinensis plants expressing a choline oxidase(codA) gene from Arthrobacter globiformis were obtained through Agrobacterium tumefaciens-mediated transformation.In the transgenic plants,codA gene expression and its product transportation to chloroplasts were detected by the enzyme-linked immunosorbent assay(ELISA) examination,immunogold localization,and 1 H-nuclear magnetic resonance( 1 H-NMR) . Stress tolerance was evaluated in the T3 plants under extreme temperature and salinity conditions.The plants of transgenic line 1(L1) showed significantly higher net photosynthetic rate(Pn) and Pn recovery rate under high(45°C,4 h) and low temperature(1°C,48 h) treatments,and higher photosynthetic rate under high salinity conditions(100,200,and 300 mmol/L NaCl,respectively) than the wild-type plants.The enhanced tolerance to high temperature and high salinity stresses in transgenic plants is associated with the accumulation of betaine,which is not found in the wild-type plants.Our results indicate that the introduction of codA gene from Arthrobacter globiformis into Brassica compestris L.spp.chinensis could be a potential strategy for improving the plant tolerance to multiple stresses.  相似文献   

18.
Freeze-drying is a promising method for a long-term storage of human platelets. The moisture sorption characteristics of freeze-dried human platelets (FDHPs) were studied in this paper. The moisture sorption isotherms of FDHPs and freeze-dried lyophilization buffer (FDLB) were measured at 4, 25, and 37 °C. The experimental data were fitted to Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) equations. There were no significant statistical differences (P>0.05) between the sorption characteristics of FDHPs and FDLB at 4 and 25 °C, while FDHPs absorbed more water at 37 °C. The net isosteric heat of sorption was derived. The heat for FDHPs showed an abnormal negative value at low moisture contents when 25 and 37 °C data were used. Dynamic sorption experiments were carried out at 25 °C with environmental water activity controlled at 0.75, 0.85, and 0.90. The moisture diffusion coefficient was fitted to be 8.24×10−12 m2/s when experimental data at initial time were used. These results would be helpful in choosing prehydration and storage condition for FDHPs.  相似文献   

19.
Cu(In,Ga)Se2 (CIGS) precursor films were deposited on Mo/glass by electrodeposition, and then annealed in Se vapor. The annealing temperature ranged from 450 °C to 580 °C, and two heating rates were selected. The results showed that the crystalline quality of the CIGS films and formation of the Cu-Se compound could be strongly influenced by the selenization temperature and heating rate. Raman spectroscopy and X-ray diffraction (XRD) analysis showed that when the selenization temperature was increased from 450 °C to 550 °C, the amount of binary CuSe phase decreased and the amount of Cu2Se increased. After annealing at 580 °C, a minimum amount of Cu2?xSe compounds was obtained and the degree of CIGS film crystallinity was higher than in other samples. The relationship between the properties of the film and the heating rate was studied. XRD and Raman spectra showed a decrease in the Cu2?xSe phase with increasing heating rate. Scanning electron microscopy (SEM) and XRD showed a remarkable increase in the grain size of CIGS during rapid heating.  相似文献   

20.
1IntroductionThe synthesis and characterization of nano-struc-tured materials are the subject of intense current re-search.Hyperfineγ-Fe2O3particle with good perfor-mance,such as magnetism,catalysis,gas-sensitivityand so on,are widely applied in various fields[1].It ishighly significant to research and develop the methodsfor synthesis of nanometerγ-Fe2O3.With the development of nano-science and nano-technology,the methods for preparation ofγ-Fe2O3have been greatly progressed,for example,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号