首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

2.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

3.
中师数学课本《代数初等函数》第一册 P_(276)15题:已知 a>0,b>0,a b=20,问 a、b 为何值时,a~2 b~2最小?此题可用均值不等式求解如下:∵a~2 b~2≥2ab.∴2(a~2 b~2)≥a~2 b~2 2ab=(a b)~2.∴a~2 b~2≥((a b)~2)/2=200.当且仅当 a=b 时取“=”.∴a=b=10时,a~2 b~2取最小值200.然而,笔者发现,用柯西不等式解这个题将更简捷,  相似文献   

4.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

5.
命题 若a,b都是正数,变量υ≥0,ν≥0,且υ~2 ν~2=m(定值),则函数y=aυ bν的最大值是(a~2 b~2)m(1/2)。  相似文献   

6.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

7.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

8.
将完全平方公式(a+b)~2=a~2+2ab+b~2,(a-b)~2-2ab+b~2进行变形后易得以下几个公式:a~2+b~2=(a+b)~2-2ab=(a-b)~2+2ab,(a+b)~2=(a-b)~2+4ab(a-b)~2=(a+b)~2-4ab,(a+b)~2-(a-b)~2=2(a~2+b~2),(a+b)~2-(a-b)~2=4ab,(和差化积公式)ab=(a+b/2)~2-(a-b/2)~2.(积化和差公式)  相似文献   

9.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

10.
完全立方公式 (a+b)~3=a~3+3a~2b+3ab~2+b~3稍加变形,即得 a~3+b~3(a+b)~3-3ab(a+b) ① (a+b)~3=a~3+b~3+3ab(a+b) ②有些数学题,用这两个变形公式去解,更显得方便快捷。请看几例:  相似文献   

11.
最值问题中,有一类在给定条件下求最大值的问题,可用构造条件的方法求解。现介绍如下: 有关定理(柯西不等式): 对于任意实数a_i,b_i(i=1,2,…n),有:(a1b1+a2b2+…+a_nb_n)~2≤(a~21+a~22+…+a~2n)·(b~21+b~22+…+b~2n).其中,当且仅当a_i=kbi时取等号。 由柯西不等式,易得如下推论: 如果:(a~21+a~22+…+a~2n=S2(常数S>0) b~21+b~22+…+b~2n=t~2(常数t>0) 那么:a1b1+a2b2+…+a_nb_n≤S·t,当且仅当a_i/b_i=s/t(i=1,2,…,n)时,取等号,即a1b1+a2b2+…+a_nb_n有最大值s·t. 例1:已知:a2+b2+c2=1,求的最大值。 分析:为了利用推论,必须  相似文献   

12.
费马(Fermat)定理:p是一奇素数,那么存在两整数a和b使得p=a~2+b~2成立的充分必要条件是p≡1(mod4).若p≡1(mod4),则p可唯一写成a~2+b~2(不区分b~2+a~2与(-a)~2+(-b)~2这两种形式)。证明:如p=a~2+b~2,那么p=a~2+b~2(mod4),而a~2、b~2均同余于0~2,1~2,2~2,3~2  相似文献   

13.
在《由基本不等式“a~2+b~2≥2ab”想到的》(见本刊1989年第4期)一文中给出了以下猜想(即原文的命题19): 命题1 设a,b,c为正数,则 (1) a~5+b~+c~5≥a~8bc+ab~8c+abc~8; (2) a~n+b~n+c~n≥a~pb~qc~r+a~qb~rc~p+a~rb~pc~q。其中n∈N,p,q,r为非负整数,且p+q+r=n。我们首先证明这一猜想是成立的。证明 (1)用两种方法证。证法1 由(a~3-b~3)(a~2-b~2)≥0得 a~5+b~5≥a~3b~2+a~2b~3同理 b~5+c~5≥b~3c~2+b~2c~3, c~5+a~5≥c~3a~2+c~2a~3。以上三个不等式相加,并注意到b~2+c~2≥2bc,c~2+a~2≥2ca,a~2+b~2≥2ab,有 2(a~5+b~5+c~5)≥a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥2a~3bc+2b~3ca+2c~3ab,  相似文献   

14.
将a~2 b~2≥2ab两边同时加上a~2 b~2并整理得: 变形I (a b)~2≤2(a~2 b~2) (a、b∈R,当且仅当ab时取等号)。 当a、b∈R~ 时,将a~2 b~2≥2ab两边同除以b得:  相似文献   

15.
<正>一、不等式的常见类型在高中数学中,常见的不等式主要包括四种:第一种:(1)如果a,b∈R,那么a~2+b~2≥2ab,当且仅当a=b的时候,取"="。(2)2如果a,b∈R,那么ab≤(a~2+b~2)/2,当且仅当a=b的时候,取"="。  相似文献   

16.
贵刊1990年第五期《方程组的解法及其应用》一文中的例5及其解法是: 若a、b为实数,且a~2+3a+1=0,b~2+3b+1=0,求b/a+a/b的值。(1987年泉州市初二双基邀请赛题) 解:由已知及方程根的定义可知,a、b是方程x~2+3x+1=0的两根,由韦达定理得a+b=-3,ab=1,∴b/a+a/b=(a~2+b~2)/ab=((a+b)~2-2ab)/ab  相似文献   

17.
正公式(a+b)~2=a~2+2ab+b~2和(a-b)~2=a~2-2ab+b~2统称为完全平方公式.熟练地掌握了这两个公式的应用后,在学习中,还应注意它们的三种变形及其应用.一、逆向变形a~2+2ab+b~2=(a+b)~2,a~2-2ab+b~2=(a-b)~2.例1计算999×999+1999.  相似文献   

18.
2.2 由教材编拟解答题的示例示例11 由乘法公式,有(a+b)~2=a~2+2ab+b~2,(a-b)~2=a~2-2ab+b~2.相减,可得一个恒等式(a+b)~2-4ab=(a-b)~2.①然后,把左右两边拆开,令①式左边为0,则右边  相似文献   

19.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

20.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号