首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designing new cathodes with high capacity and moderate potential is the key to breaking the energy density ceiling imposed by current intercalation chemistry on rechargeable batteries. The carbonaceous materials provide high capacities but their low potentials limit their application to anodes. Here, we show that Fermi level tuning by p-type doping can be an effective way of dramatically raising electrode potential. We demonstrate that Li(Na)BCF2/Li(Na)B2C2F2 exhibit such change in Fermi level, enabling them to accommodate Li+(Na+) with capacities of 290–400 (250–320) mAh g−1 at potentials of 3.4–3.7 (2.7–2.9) V, delivering ultrahigh energy densities of 1000–1500 Wh kg−1. This work presents a new strategy in tuning electrode potential through electronic band structure engineering.  相似文献   

2.
Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO2 uptake of –2.2 ± 0.6 PgC yr−1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr−1 with an interquartile of 33–46 PgC yr−1—a much smaller portion of net primary productivity than previously reported.  相似文献   

3.
Applying metal organic frameworks (MOFs) in electrochemical systems is a currently emerging field owing to the rich metal nodes and highly specific surface area of MOFs. However, the problems for MOFs that need to be solved urgently are poor electrical conductivity and low ion transport. Here we present a facile in situ growth method for the rational synthesis of MOFs@hollow mesoporous carbon spheres (HMCS) yolk–shell-structured hybrid material for the first time. The size of the encapsulated Zeolitic Imidazolate Framework-67 (ZIF-67) is well controlled to 100 nm due to the spatial confinement effect of HMCS, and the electrical conductivity of ZIF-67 is also increased significantly. The ZIF@HMCS-25% hybrid material obtained exhibits a highly efficient oxygen reduction reaction activity with 0.823 V (vs. reversible hydrogen electrode) half-wave potential and an even higher kinetic current density (JK = 13.8 mA cm−2) than commercial Pt/C. ZIF@HMCS-25% also displays excellent oxygen evolution reaction performance and the overpotential of ZIF@HMCS-25% at 10 mA cm−2 is 407 mV. In addition, ZIF@HMCS-25% is further employed as an air electrode for a rechargeable Zn–air battery, exhibiting a high power density (120.2 mW cm−2 at 171.4 mA cm−2) and long-term charge/discharge stability (80 h at 5 mA cm−2). This MOFs@HMCS yolk–shell design provides a versatile method for the application of MOFs as electrocatalysts directly.  相似文献   

4.
Most metal–organic frameworks (MOFs) hardly maintain their physical and chemical properties after exposure to alkaline aqueous solutions, thus precluding their use as potential electrode materials for electrochemical energy storage devices. Here, we present the design and synthesis of a highly alkaline-stable metal oxide@MOF composite, Co3O4 nanocube@Co-MOF (Co3O4@Co-MOF), via a controllable and facile one-pot hydrothermal method under highly alkaline conditions. The obtained composite possesses exceptional alkaline stability, retaining its original structure in 3.0 M KOH for at least 15 days. Benefitting from the exceptional alkaline stability, unique structure, and larger surface area, the Co3O4@Co-MOF composite shows a specific capacitance as high as 1020 F g−1 at 0.5 A  g−1 and a high cycling stability with only 3.3% decay after 5000 cycles at 5 A g−1. The as-constructed solid-state flexible device exhibits a maximum energy density of 21.6 mWh cm−3.  相似文献   

5.
Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na+ ions. Herein, we propose a molecular grafting strategy to in situ synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnP2O7@N-C), which exhibits a high fraction of active SnP2O7 up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g−1 at 0.1 A g−1, excellent rate capability up to 5.0 A g−1 and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g−1. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnP2O7@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.  相似文献   

6.
Lithium metal is one of the most promising anode materials for high-energy-density Li batteries. However, low stability caused by dendrite growth and volume change during cycling hinders its practical application. Herein, we report an ingenious design of bio-inspired low-tortuosity carbon with tunable vertical micro-channels to be used as a host to incorporate nanosized Sn/Ni alloy nucleation sites, which can guide Li metal''s plating/stripping and meanwhile accommodate the volume change. The pore sizes of the vertical channels of the carbon host can be regulated to investigate the structure–performance correlation. After compositing Li, the bio-inspired carbon host with the smallest pore size (∼14 μm) of vertical channels exhibits the lowest overpotential (∼18 mV at 1 mA cm−2), most stable tripping/plating voltage profiles, and best cycling stability (up to 500 cycles) in symmetrical cells. Notably, the carbon/Li composite anode is more rewarding than Li foil when coupled with LiFePO4 in full cells, exhibiting a much lower polarization effect, better rate capability and higher capacity retention (90.6% after 120 cycles). This novel bio-inspired design of a low-tortuosity carbon host with nanoalloy coatings may open a new avenue for fabricating advanced Li-metal batteries with high performance.  相似文献   

7.
Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.  相似文献   

8.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3–(x)CaTiO3 (BTFM–CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7–3.0 × 10−7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM–CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.  相似文献   

9.
The carbon budgets in terrestrial ecosystems in China are strongly coupled with climate changes. Over the past decade, China has experienced dramatic climate changes characterized by enhanced summer monsoon and decelerated warming. However, the changes in the trends of terrestrial net ecosystem production (NEP) in China under climate changes are not well documented. Here, we used three ecosystem models to simulate the spatiotemporal variations in China''s NEP during 1982–2010 and quantify the contribution of the strengthened summer monsoon and warming hiatus to the NEP variations in four distinct climatic regions of the country. Our results revealed a decadal-scale shift in NEP from a downtrend of –5.95 Tg C/yr2 (reduced sink) during 1982–2000 to an uptrend of 14.22 Tg C/yr2 (enhanced sink) during 2000–10. This shift was essentially induced by the strengthened summer monsoon, which stimulated carbon uptake, and the warming hiatus, which lessened the decrease in the NEP trend. Compared to the contribution of 56.3% by the climate effect, atmospheric CO2 concentration and nitrogen deposition had relatively small contributions (8.6 and 11.3%, respectively) to the shift. In conclusion, within the context of the global-warming hiatus, the strengthening of the summer monsoon is a critical climate factor that enhances carbon uptake in China due to the asymmetric response of photosynthesis and respiration. Our study not only revealed the shift in ecosystem carbon sequestration in China in recent decades, but also provides some insight for understanding ecosystem carbon dynamics in other monsoonal areas.  相似文献   

10.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

11.
Carbon is one of the most fascinating elements due to its structurally diverse allotropic forms stemming from its bonding varieties (sp, sp2 and sp3). Exploring new forms of carbon has been the eternal theme of scientific research. Herein, we report on amorphous (AM) carbon materials with a high fraction of sp3 bonding recovered from compression of fullerene C60 under high pressure and high temperature, previously unexplored. Analysis of photoluminescence and absorption spectra demonstrates that they are semiconducting with a bandgap range of 1.5–2.2 eV, comparable to that of widely used AM silicon. Comprehensive mechanical tests demonstrate that synthesized AM-III carbon is the hardest and strongest AM material known to date, and can scratch diamond crystal and approach its strength. The produced AM carbon materials combine outstanding mechanical and electronic properties, and may potentially be used in photovoltaic applications that require ultrahigh strength and wear resistance.  相似文献   

12.
Inspired by nature, improving photosensitization represents a vital direction for the development of artificial photosynthesis. The sensitization ability of photosensitizers (PSs) reflects in their electron-transfer ability, which highly depends on their excited-state lifetime and redox potential. Herein, for the first time, we put forward a facile strategy to improve sensitizing ability via finely tuning the excited state of Ru(II)-PSs (Ru-1–Ru-4) for efficient CO2 reduction. Remarkably, [Ru(Phen)2(3-pyrenylPhen)]2+ (Ru-3) exhibits the best sensitizing ability among Ru-1–Ru-4, over 17 times higher than that of typical Ru(Phen)32+. It can efficiently sensitize a dinuclear cobalt catalyst for CO2-to-CO conversion with a maximum turnover number of 66 480. Systematic investigations demonstrate that its long-lived excited state and suitable redox driving force greatly contributed to this superior sensitizing ability. This work provides a new insight into dramatically boosting photocatalytic CO2 reduction via improving photosensitization.  相似文献   

13.
Hydrothermal fluid is essential for transporting metals in the crust and mantle. To explore the potential of Cu isotopes as a tracer of hydrothermal-fluid activity, Cu-isotope fractionation factors between Cl-bearing aqueous fluids and silicate magmas (andesite, dacite, rhyolite dacite, rhyolite and haplogranite) were experimentally calibrated. Fluids containing 1.75–14 wt.% Cl were mixed together with rock powders in Au95Cu5 alloy capsules, which were equilibrated in cold-seal pressure vessels for 5–13 days at 800–850°C and 2 kbar. The elemental and Cu-isotopic compositions of the recovered aqueous fluid and solid phases were analyzed by (LA-) ICP–MS and multi-collector inductively coupled plasma mass spectrometry, respectively. Our experimental results show that the fluid phases are consistently enriched in heavy Cu isotope (65Cu) relative to the coexisting silicates. The Cu-isotope fractionation factor (Δ65CuFLUID-MELT) ranges from 0.08 ± 0.01‰ to 0.69 ± 0.02‰. The experimental results show that the Cu-isotopic fractionation factors between aqueous fluids and silicates strongly depend on the Cu speciation in the fluids (e.g. CuCl(H2O), CuCl2 and CuCl32−) and silicate melts (CuO1/2), suggesting that the exsolved fluids may have higher δ65Cu than the residual magmas. Our results suggest the elevated δ65Cu values in Cu-enriched rocks could be produced by addition of aqueous fluids exsolved from magmas. Together with previous studies on Cu isotopes in the brine and vapor phases of porphyry deposits, our results are helpful for better understanding Cu-mineralization processes.  相似文献   

14.
Activation of high-energy triple-bonds of N2 is the most significant bottleneck of ammonia synthesis under ambient conditions. Here, by importing cobalt single clusters as strong electron-donating promoter into the catalyst, the rate-determining step of ammonia synthesis is altered to the subsequent proton addition so that the barrier of N2 dissociation can be successfully overcome. As revealed by density functional theory calculations, the N2 dissociation becomes exothermic over the cobalt single cluster upon the strong electron backdonation from metal to the N2 antibonding orbitals. The energy barrier of the positively shifted rate-determining step is also greatly reduced. At the same time, advanced sampling molecular dynamics simulations indicate a barrier-less process of the N2 approaching the active sites that greatly facilitates the mass transfer. With suitable thermodynamic and dynamic property, a high ammonia yield rate of 76.2 μg h–1 mg and superior Faradaic efficiency of 52.9% were simultaneously achieved.  相似文献   

15.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

16.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

17.
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.  相似文献   

18.
We report on low-cost fabrication and high-energy density of full-cell lithium-ion battery (LIB) models. Super-hierarchical electrode architectures of Li2SiO3/TiO2@nano-carbon anode (LSO.TO@nano-C) and high-voltage olivine LiMnPO4@nano-carbon cathode (LMPO@nano-C) are designed for half- and full-system LIB-CR2032 coin cell models. On the basis of primary architecture-power-driven LIB geometrics, the structure keys including three-dimensional (3D) modeling superhierarchy, multiscale micro/nano architectures and anisotropic surface heterogeneity affect the buildup design of anode/cathode LIB electrodes. Such hierarchical electrode surface topologies enable continuous in-/out-flow rates and fast transport pathways of Li+-ions during charge/discharge cycles. The stacked layer configurations of pouch LIB-types lead to excellent charge/discharge rate, and energy density of 237.6 Wh kg−1. As the most promising LIB-configurations, the high specific energy density of hierarchical pouch battery systems may improve energy storage for long-driving range of electric vehicles. Indeed, the anisotropic alignments of hierarchical electrode architectures in the large-scale LIBs provide proof of excellent capacity storage and outstanding durability and cyclability. The full-system LIB-CR2032 coin cell models maintain high specific capacity of ∼89.8% within a long-term life period of 2000 cycles, and average Coulombic efficiency of 99.8% at 1C rate for future configuration of LIB manufacturing and commercialization challenges.  相似文献   

19.
Determining the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the Earth''s metallic cores. The authors summarize relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.

The thermal conductivity of iron alloys is a key to understanding the mechanism of convection in the Earth''s liquid core and its thermal history. The Earth''s magnetic field is formed by a dynamo action that requires convection in the liquid core. Present-day outer core convection can be driven by the buoyancy of light-element-enriched liquid that is released upon inner core solidification in addition to thermal buoyancy associated with secular cooling. In contrast, before the birth of the inner core, the core heat loss must be more than the heat conducted down the isentropic gradient in order to drive convection by thermal buoyancy alone, which can be a tight constraint upon the core thermal evolution.Recent mineral physics studies throw the traditional value of the Earth''s core thermal conductivity into doubt (Fig. (Fig.1).1). Conventionally the thermal conductivity of the outer core had been considered to be ∼30 W m−1 K−1, an estimate based on shock experiments and simple physical models including the Wiedemann-Franz law: κel = LTρ−1, where κel, L, T and ρ are electronic thermal conductivity, Lorenz number, temperature and electrical resistivity, respectively [1]. Such relatively low core conductivity indicates that liquid core convection could have been driven thermally even with relatively slow cooling rate. However, in 2012–2013, our conventional view was challenged by both computational and experimental studies showing much higher core conductivity [2–4].Open in a separate windowFigure 1.(a) Electrical resistivity and (b) thermal conductivity values at the top of the Earth''s core in the literature [1,2,4–7,9,16]. Filled symbols were calculated on the basis of the Wiedemann-Franz law with ideal Lorenz number (L0 = 2.44 × 10−8 W Ω K−2). Gray bands indicate (a) the range of saturation resistivity [9] and (b) thermal conductivity computed from the saturation resistivity and the Wiedemann-Franz law.Since then, experimental determinations of the thermal conductivity of iron and alloys have been controversial (Fig. (Fig.1).1). Ohta et al. [5] measured the electrical resistivity of iron under core conditions in a laser-heated diamond-anvil cell (DAC). The results demonstrate relatively high thermal conductivity of ∼90 W m−1 K−1 for liquid Fe-Ni-Si alloy based on their measured resistivity for pure iron, Matthissen''s rule and Wiedemann-Franz law, which is compatible with ab initio simulations [2,4]. On the other hand, flash laser-heating and fast thermal radiation detection experiments demonstrated the low core conductivity of 20–35 W m−1 K−1 based on finite element method simulations [6,7], in accordance with the traditional estimate [1]. Since transport properties that describe non-equilibrium phenomena are difficult to measure, the fact that determinations of the iron conductivity under core conditions have become viable these days is a remarkable success in mineral physics. Nevertheless, the discrepancy in core conductivity makes a big difference in the expected age of the inner core, mechanism of liquid core convection and thermal history [3].Despite a number of subsequent studies based on a variety of different techniques, we still see a dichotomy of proposed core conductivity values (Fig. (Fig.1).1). The ‘saturation’ resistivity, which is derived from the fact that the mean free path of electron–phonon interaction cannot be longer than the interatomic distance, gives the lower bound for conductivity. Such saturation resistivity lies between two clusters of reported high and low resistivity values. While the resistivity saturation is important in highly resistive transition metals and their alloys [3,8] (Fig. (Fig.2),2), the conventional estimate [1] did not include the effect of saturation in their models, which resulted in much higher resistivity than the saturation value and hence low core conductivity. The core electrical resistivity measured by recent DAC experiments [3,5,9] shows resistivity saturation (Fig. (Fig.2),2), demonstrating the high core conductivity as far as the Wiedemann-Franz law holds with ideal Lorenz number (Fig. (Fig.1).1). Additionally, since temperature has a large effect on resistivity, temperature gradient in a laser-heated sample is an issue. An internally-resistance-heated DAC provides homogenous and stable sample heating and is thus a promising technique for conductivity measurements at high pressure and temperature (P–T) [9]. The validity of the Wiedemann-Franz law under extreme conditions has also been an issue. Simultaneous measurements of the electrical resistivity and the thermal conductivity of iron alloy under core high P–T conditions will provide decisive evidence for it.Open in a separate windowFigure 2.Temperature response of the electrical resistivity of (a) fcc iron estimated at 1 bar [8] (blue curve) and (b) hcp iron at 115 GPa [5]. Red curve and black line with gray uncertainty band indicate the predicted resistivity based on the Bloch-Grüneisen model with and without the resistivity saturation, respectively.As introduced above, the most recent high P–T measurements for Fe containing 2, 4, 6.5 wt.% Si using an internally-resistance-heated DAC have demonstrated that the thermal conductivity of Fe-12.7 wt.% (22.5 at.%) Si is ∼88 W m−1 K−1 at core-mantle boundary (CMB) conditions when the effects of resistivity saturation, melting and crystallographic anisotropy at measurements are taken into account [9] (Fig. (Fig.1).1). Thermal conductivity of Fe-10 at.% Ni-22.5 at.% Si alloy, a possible outer core composition, could be ∼79 W m−1 K−1 considering the impurity effect of Ni [10]. Si exhibits the largest ‘impurity resistivity’, indicating that the 79 W m−1 K−1 is the lower bound for the thermal conductivity of the Earth''s liquid core. The core thermal evolution models by Labrosse [11] demonstrated that if liquid core convection has been driven by thermal buoyancy with the core thermal conductivity of 79 W m−1 K−1 at the CMB and no radiogenic heating in the core, the CMB temperature is calculated to be ∼5500 K at 3.2 Ga and ∼4800 K at 2.0 Ga. Such high CMB temperature suggests that the whole mantle was fully molten until 2.0–3.2 Ga. It is not consistent with geological records, calling for a different mechanism of core convection.Chemical buoyancy may be an alternate means of driving convection in the core from the early history of the Earth. It has been proposed that the compositional buoyancy in the core could arise from the exsolution of MgO, SiO2 or both [12–14]. Recent core formation models based on the core-mantle distributions of siderophile elements suggest that core metals segregated from silicate at high temperatures, typically at 3000–4000 K and possibly higher [13,15], which enhances the incorporation of lithophile elements including Si and O, and possibly Mg into metals. It is suggested that the (Si, O)-rich liquid core may have become saturated with SiO2 upon secular cooling [14]. Indeed, the original core compositions proposed in recent core formation models include Si and O beyond the saturation limit at CMB conditions [15], i.e. 136 GPa and 4000 K, leading to SiO2 crystallization [13]. The rate of SiO2 crystallization required to sustain geodynamo is as low as 1 wt.% per 109 years, which corresponds to a cooling rate of 100–200 K Gyr−1 [14]. The most recent model of the core compositional evolution by Helffrich et al. [13] showed that MgO saturation follows SiO2 saturation only when >1.7 wt.% Mg in the core. If this is the case, in addition to solid SiO2, (Mg, Fe)-silicate melts exsolve from the core and transfer core-hosted elements such as Mo, W and Pt to the mantle. The core-derived silicate melts may have evolved toward FeO-rich compositions and now represent the ultra-low velocity zones above the CMB.  相似文献   

20.
This research presents a multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen (BUN) and glucose detection in human whole blood. A novel enzyme-doped thread coated with a thin polyvinylchloride (PVC) membrane is produced for on-site electrochemical detection of urea and glucose in whole blood. Multiple enzymes can be directly applied to the thread without delicate pretreatment or a surface modification process prior to sealing the thread with PVC membrane. Results indicate that the developed device exhibits a good linear dynamic range for detecting urea and glucose in concentrations from 0.1 mM–10.0 mM (R2 = 0.9850) and 0.1 mM–13.0 mM (R2 = 0.9668), which is suitable for adoption in detecting the concentrations of blood urea nitrogen (BUN, 1.78–7.12 mM) and glucose (3.89–6.11 mM) in serum. The detection result also shows that the developed thread-based microfluidic system can successfully separate and detect the ions, BUN, and glucose in blood. The calculated concentrations of BUN and glucose ante cibum (glucose before meal) in the whole blood sample are 3.98 mM and 4.94 mM, respectively. The developed thread-based microfluidic system provides a simple yet high performance for clinical diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号