首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
对于定理:设,,,abcR 则333abc ?3abc, (当且仅当abc==时,等号成立)已有许多新证[1][2][3][4],本文再介绍以下几种方法: 1 构造法.构造二次式,升为三次式 证1 构造: 222()()()abbcca- - -? 222()[()()()]abcabbcca - - -?, 整理易得3333abcabc ? 证2 构造: 2222222()2()2()a  相似文献   

2.
首先,我们规定:a、b、c为正数。 (a~2+b~2+c~2)/3~(1/2)表示三个正数的幂平均;(a+b+c)/3表示三个正数的算术平均;(abc)~(1/3)表示三个正数的几何平均。有(等号当且仅当a=b=c时成立)不等式②是高中三册P62定理2的推  相似文献   

3.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

4.
教学实践中,曾遇到过如下题目: 设a、b、cR ,且44454690abc =, 试求333522abc 的最大值. 凭过去积累的解题经验,第一时间认为可以用均值不等式求解这一问题,但多次构设均值不等式都无功而返,偶尔想到柯西不等式常用于求多元函数的最值,一试,解题方案便跃然纸上: 由柯西不等式得 3332(523)abc 2222(55263/2)aabbcc= ?444222(546)(53/2)abcabc , ① 2222(53/2)abc 2222(552/266/4)abc= ?444(546)(51/46/16)abc . ② 注意到题设,综合①、②便有 33352345abc ? 等号当且仅当 2225:52:6:3/2aabbcc==, 且 2225:52:1/26:6/4abcc…  相似文献   

5.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

6.
一个不等式推广问题的研讨   总被引:1,自引:0,他引:1  
文[1]给出了如下: 定理1设a、b、c为正实数,l、m、n是不全为零的非负实数,则有 2aabcabc++l+m+nl+m+n, (1) 其中表示对a 、b、c的循环和,等号当且仅当abc==或0,0lm=n=时成立. 文[2]将定理1推广为: 定理2 设a、b、c为正实数, l、m、n是不全为零的非负实数,2m,则有 213()mmmaabcabc--++l+m+nl+m+n,(2) 其中表示对a、b、c的循环和,当m>2时,等号当且仅当abc==时成立;当m=2时,等号当且仅当abc==或0,l筸=n0=时成立.. 本文从项数方面入手,将定理2推广为: 定理3 设1,2,,nxxxL为正实数,12,,ll ,nlL是不全为零的非负实数,2m,则有 11122mnnxxxx…  相似文献   

7.
正Pham Kim Hung不等式:设a,b,c≥0,a+b+c=2,证明:a~2b~2+b~2c2+c~2a~2+abc≤1①.当且仅当a=b=1,c=0及其循环排列时等号成立.这是Pham Kim Hung在《不等式的秘密》(第一卷)中提到并证明的一个有趣的不等式,文[2]将该不等式加强为  相似文献   

8.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

9.
本文从一个基本初等不等式a~3+b~3+c~3≥3abc(a、b、c∈R~+)出发,利用凸函数的定义及性质,对它进行推广,得到了此不等式更广泛的形式:p_1a_1∑(pi)+p_2a_2∑pi+……+p_na_n∑pi≥(∑pi)(a_1)~(p_1)(a_2)~(P_2)…(a_n)~(p_n),当且仅当a_1=a_2=……=a_n时,等号成立。从本文给出的两个例子可以看出,此推广形式对一些不等式的证明十分方便。  相似文献   

10.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

11.
在平均值不等式a~2 b~2≥2ab中,当b>0时,有a~2/b≥2a-b。 (当且仅当a=b时等号成立)。下面我们利用这个不等式给出竞赛中的一些不等式的新的证法。 例1 设a、b、c∈R~ ,且abc=1,求证  相似文献   

12.
熟知,如果△ABC的三边,面积及半周长分别为a、b、c、⊿、p,那么 abc≥(2/(3~(1/2)))⊿P (1)其中等号当且仅当a=b=c时成立。本文从一极普通的代数恒等式(2)出发,经过改述得到一个三元循环不等式(3)。然后,引进一种代换(T),使代数不等式  相似文献   

13.
高中代数下册第10页在推证基本不等式a~3 b~3 c~3≥3abc时附带证明了一个不等式:已知a、b、c∈R,则 a~2 b~2 c~2≥ab bc ca (1)(当且仅当a=b=c时取等号)  相似文献   

14.
设,,abc皆为正实数,则有 32cbabacabc++?++, (1) 等式成立当且仅当abc==. 不等式(1)是广为人知的循环不等式[1]、[2],并且已推广到多元情形[3],本文给出它的一个加权形式的推广. 定理 设,,abc皆为正实数,,,lmu是不全为零的非负实数,且2mul+?则有 ababcbcalmulmu+++++ 3ccablmulmu+?+++, (2) 等式成立当且仅当lmu==或abc==. 为证明定理,我们先给出一条引理: 引理[4] 设,iaR(1,2,,),ibRin?L则有 22111()niniiniiiiaabb===, 等式成立当且仅当1122///nnababab===L. 定理的证明 由假设,不等式(2)的左边的三个分母均大于零,于是…  相似文献   

15.
以下的两个基本不等式:1.(m+n)2≥4mn(即(m-n)2≥0)2.当m,n>0时,(以上不等式中的等号,当且仅当m=n时成立)  相似文献   

16.
正基本不等式:1/2(ab)≤(a+b)/2(其中a≥0,b≥0)当且仅当a=b时等号成立,当1/2(ab)=(a+b)/2,此时即1/2(1/2a-1/2b)2=0,可看出a=b.a=b一方面可看作不等式成立的特殊情况,另一方面也可看作恒等式成立的条件.基本不等式等号成立的条件有两个:①两数非负,②两数相等,这就说明基本不等式等号成立对条件有着较强的要求.反过来如果基本  相似文献   

17.
在人教教材中有一个不等式ex>1+x(x≠0),利用这个不等式及其变形可以证明不等式或恒成立问题,比直接用导数求解要简单,而且可以避免复杂的求导运算。原形:ex≥1+x当且仅当x=0时,等号成立;变形:ln(x+1)≤x(x>-1)当且仅当x=0时,等号成立;用导数证明很容易,过程略。例1(2013年新课标Ⅱ)已知函数f(x)=ex-ln(x+m)。  相似文献   

18.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

19.
Weisenb ck不等式 :设a、b、c和S分别表示△ABC的三边长和面积 ,则a2 +b2 +c2 ≥43S ,当且仅当a =b =c时等号成立 .文 [1 ]将该不等式进行了三维推广 ,得到关于四面体的两个不等式 .本文将对该不等式作进一步的三维推广 ,得出关于四面体的更一般的结论 .引理 设四面体的 6条棱长之积为P ,体积为V ,则P≥72V2 ,当且仅当四面体为正四面体时等号成立[2 ] .命题 1 设四面体ABCD的 6条棱长分别为a、b、c、d、e、f,体积为V .则对任意自然数n有an+bn+cn+dn+en+fn≥6(72V2 ) n6,①当且仅当四面体为正四面体时等号成立 .证明 :根据算术—几…  相似文献   

20.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号