首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

2.
新教材第九章(B)中的第44页有如下公式:cosθ=cosθ1cosθ2,它的几何解释如下:如图1,已知OA是平面α的斜线,A为斜足,OB⊥α,垂足为B,AC为α内任一直线.AO与AB所成的角为θ1(线面角);AB与AC所成的角为θ2(面内角);AO与AC所成的角为θ(面外角).  相似文献   

3.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

4.
如图1,已知AO是平面α的一条斜线, A是斜足,OB垂直于α,B是垂足,则直线AB是斜线AO图1在平面α内的射影.设AC是α内的任一直线.设AO与AB所成的角为θ1,AB与AC所成的角为θ2,AO与AC所成的角为θ.则cosθ=cosθ1cosθ2.由此我们得到最小角定理:平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成的角中的最小的角.  相似文献   

5.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

6.
巧用公式cosθ=cosθ1·cosθ2能妙解许多问题,下面举例说明.一、用于求空间角例1如图1,PA是平面α的斜线,∠BAC=90°,又∠PAB=∠PAC=60°,求PA与平面α所成的角.  相似文献   

7.
在教材中 ,不乏典型的基本图形 ,教学中如能加以研究 ,当能使知识的掌握更为牢固 ,方法的应用更加灵活 ,既能培养学生的探究创新能力 ,又能使学生享受到成功的喜悦 .下面举一例 ,加以说明 .1 基本图形的来源      图 1在新教材第 4 4页中 ,有如下内容 :如图 1,已知AO是平面α的斜线 ,A是斜足 ,OB垂直于α ,B为垂足 ,则直线AB是斜线AO在平面α内的射影 .设AC是α内的任一条直线 ,AC ⊥OC ,垂足为C ,又设AO与AB所成的角为θ1,AB与AC所成的角为θ2 ,AO与AC所成的角为θ ,经过推导得到 cosθ=cosθ1·cosθ2 .图 1中 ,三棱…  相似文献   

8.
本文给出二倍角、三倍角的正弦、余弦公式的一个几何证明,供参考.如图1.设 BC⊥AC,∠A=∠ABD=α,BD=1.则∠BDC=2α,BC=sin2α,DC=cos2α.在等腰△ABD 中,容易求  相似文献   

9.
一、坐标系、坐标平移例1 平行四边形ABCD中,|BC|=2|AB|,若将AB向两方延长使|AE|=|AB|=|BF|,求证:CE⊥DF. 证明:取A为原点,AB所在直线为x轴,建立直角坐标系,使|AB|=α,∠BAD=θ,则|CB|=|AD|=2α,各点坐标为:A(0,0),E(-  相似文献   

10.
凌艺国 《数学教学》2008,(3):25-25,10
在人教版《数学》第二册(下)直线与平面所成的角一节中有一个公式:cosθ=cosθ1cosθ2.如图1,AO是平面α的斜线,A是斜足,OB垂直于α,B为垂足,则直线AB是斜线在平面α内的射影.  相似文献   

11.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

12.
如图,AB和平面α所成的角是θ,,AC在平面α内,AC和AB的射影AB′,成角θ2.设∠BAC=θ,求证:cosθ1cosθ2=cosθ.  相似文献   

13.
文[1]P48三夹角与距离中证明了命题:如图1,设OA,OB,OC是三条不共面的射线(即三面角),∠AOB=θ1,∠COB=θ2,∠AOC=θ3,二面角A-OB-C为直二面角(即平面AOB⊥平面BOC),则有公式cosθ3=cosθ1·cosθ2①.  相似文献   

14.
如图1,直线AB和平面α所成的角是θ1,直线AC在平面α内,AC和AB的射影AB’所成的角为θ2,设∠BAC=θ,则cosθ1cosθ2=cosθ.此公式在新教材中列为了必学的内容,大大提高了其地位.下面举例谈谈它的应用.一、用于求直线与平面所成的角  相似文献   

15.
斜线AB与平面α所成的角为θ1,A为斜足,AC在α内,且与AB的射影成θ2角,∠BAC= θ,则有cosθ=cosθ1cosθ2(*). 这个公式在新教材中要求学生掌握.笔者在教学实践中发现,学生对它的应用很不熟悉.本 文试图归纳它的几个应用.  相似文献   

16.
1.求线面角、点面距思路1 如图1,设PQ与平面α的法向量n所夹的锐角为θ,则PQ与平面α所成的角为π/2-θ,点P到面α的距离图1 PH=|PH|=|PQ|cosθ. 例1 长方体ABCD-A1B1C1D1中,AD=AA1=2,AB=4,E、F分别为A1D1、AB的中点,  相似文献   

17.
立体几何教材中有这样一道习题:如图1,AB和平面α所成的角为θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设∠BAC=θ,则有cosθ1 cosθ2=cosθ.将其引申,得如下结论:命题AB和平面所成的角是θ1,AC在平面α内,AC和AB的射影AB′所成的角为θ2,设二面角B-AC-B′为ψ,  相似文献   

18.
引理 已知A0是平面α的斜线,A为斜足,OBα⊥,B为垂足,AC是平面α内的任一直线,∠0AB=θ,∠OAC=θ1,∠BAC=θ2,则cosθ1=cosθcosθ2. 根据角的放置形式,可形象地称引理为“斜(斜角)立(立角)平(平角)余弦定理”.  相似文献   

19.
若直线AB是平面α的一条斜线,A’B’是AB在平面α内的射影,l为平面α内不同于A’B’的一条直线,且AB与l的夹角为θ,A’B’与l的夹角为θ1,AB与平面α所成的角为θ2,则易知cosθ=cosθ1·cosθ2,为了便于学生记忆和灵活使用,笔者不妨将此公式称为三线三角余弦公式,  相似文献   

20.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号