首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the impact of friction in sled sprinting allows the quantification of kinetic outputs and the effective loading experienced by the athlete. This study assessed changes in the coefficient of friction (µk) of a sled sprint-training device with changing mass and speed to provide a means of quantifying effective loading for athletes. A common sled equipped with a load cell was towed across an athletics track using a motorised winch under variable sled mass (33.1–99.6 kg) with constant speeds (0.1 and 0.3 m · s?1), and with constant sled mass (55.6 kg) and varying speeds (0.1–6.0 m · s?1). Mean force data were analysed, with five trials performed for each condition to assess the reliability of measures. Variables were determined as reliable (ICC > 0.99, CV < 4.3%), with normal-force/friction-force and speed/coefficient of friction relationships well fitted with linear (R2 = 0.994–0.995) and quadratic regressions (R2 = 0.999), respectively (P < 0.001). The linearity of composite friction values determined at two speeds, and the range in values from the quadratic fit (µk = 0.35–0.47) suggested µk and effective loading were dependent on instantaneous speed on athletics track surfaces. This research provides a proof-of-concept for the assessment of friction characteristics during sled towing, with a practical example of its application in determining effective loading and sled-sprinting kinetics. The results clarify effects of friction during sled sprinting and improve the accuracy of loading applications in practice and transparency of reporting in research.  相似文献   

2.
Abstract

In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4°, 6°, and 8°, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m · s?1 and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s=0.0005). For the CT Edge blades with blade angles of 4°, 6°, and 8°, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as “thinner blades cause less friction” need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.  相似文献   

3.
Up to now, the optimization of structural parameters affecting the performance of a bobsleigh has been carried out mainly on the basis of athletes’ feedback, thus leading to a series of small modifications without univocal guidelines. Even though on-track tests represent a basic step for the final tuning of the sled, experimentation does not seem to represent an appropriate tool to objectively determine the influence of such structural parameters on the overall performance. In fact, their effect can easily be masked by driving errors, changes in the ice surface conditions and temperature thus requiring repeated tests for achieving statistical evidence. For this reason, numerical analysis, carried out with a 3D model of the bobsled, turns out to be a privileged instrument to optimize bob design although limitations in the sled model (e.g. ice friction properties that still have to be fully understood) may affect the obtained results. However, such tool is able to provide useful indications only if a correct driver model is implemented. This work focuses on the development of a numerical model of a bobsleigh driver that aims at reproducing the driving behaviour of real-world cup drivers and is basically made up of two steps: the identification of the trajectory that allows minimizing run time and the determination of the driver’s inputs to exactly follow that trajectory. For comparison purposes, the simulated driver’s inputs are compared with recorded ones on Cesana Pariol Olympic track.  相似文献   

4.
This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (μ = 0.21–0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient of friction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.  相似文献   

5.
Ice friction of flared ice hockey skate blades   总被引:2,自引:0,他引:2  
In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.  相似文献   

6.
When sharpening ice hockey blades a hollow is created at the running surface of the blade. This study aimed to quantify the effect of different blade hollows on (a) blade–ice friction, (b) skating performance in an agility course, and (c) players’ perception of blade sharpness, performance, and comfort. Friction was quantified by measuring the deceleration of a sled running on the blades. Skating performance was tested with 15 volunteers performing a total of 9 trials on 3 different hollow radii. Perception was assessed using a questionnaire. Friction increased with decreasing hollow radius. Skating performance was significantly impeded at a hollow radius of 3.18 mm. Within the range of 9.53–22.23 mm performance differences were subject specific and several subjects showed no differences. Players appeared to be not sensitive enough to identify hollow radii, and only half of the subjects ranked their performance correctly.  相似文献   

7.
Abstract

Although the biomechanical properties of the various types of running foot strike (rearfoot, midfoot, and forefoot) have been studied extensively in the laboratory, only a few studies have attempted to quantify the frequency of running foot strike variants among runners in competitive road races. We classified the left and right foot strike patterns of 936 distance runners, most of whom would be considered of recreational or sub-elite ability, at the 10 km point of a half-marathon/marathon road race. We classified 88.9% of runners at the 10 km point as rearfoot strikers, 3.4% as midfoot strikers, 1.8% as forefoot strikers, and 5.9% of runners exhibited discrete foot strike asymmetry. Rearfoot striking was more common among our sample of mostly recreational distance runners than has been previously reported for samples of faster runners. We also compared foot strike patterns of 286 individual marathon runners between the 10 km and 32 km race locations and observed increased frequency of rearfoot striking at 32 km. A large percentage of runners switched from midfoot and forefoot foot strikes at 10 km to rearfoot strikes at 32 km. The frequency of discrete foot strike asymmetry declined from the 10 km to the 32 km location. Among marathon runners, we found no significant relationship between foot strike patterns and race times.  相似文献   

8.
Abstract

The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67–73 years) and 17 young adults (age 26–36 years) ran at 3.1 m · s?1 on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33°; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12°; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (?5.8 vs. ?1.0°; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

9.
Aerodynamic properties of an archery arrow   总被引:1,自引:0,他引:1  
Two support-interference-free measurements of aerodynamic forces exerted on an archery arrow (A/C/E; Easton Technical Products) are described. The first measurement is conducted in a wind tunnel with JAXA’s 60 cm Magnetic Suspension and Balance System, in which an arrow is suspended and balanced by magnetic force against gravity. The maximum wind velocity is 45 m/s, which is less than a typical velocity of an arrow (about 60 m/s) shot by an archer. The boundary layer of the arrow remains laminar in the measured Re number range (4.0 × 103 < Re < 1.5 × 104), and the drag coefficient is about 1.5 for Re > 1.0 × 104. The second measurement is performed by a free flight experiment. Using two high-speed video cameras, we record the trajectory of an archery arrow and analyze its velocity decay rate, from which the drag coefficient is determined. In order to investigate Re number dependence of the drag coefficient in a wider range (9.0 × 103 < Re < 2.4 × 104), we have developed an arrow-shooting system using compressed air as a power source, which launches the A/C/E arrow at an arbitrary velocity up to 75 m/s. We attach two points (piles) of different type (streamlined and bullet) to the arrow-nose. The boundary layer is laminar for both points for Re less than about 1.2 × 104. It becomes turbulent for Re larger than 1.2 × 104 and the drag coefficient increases to about 2.6, when the bullet point is attached. In the same Re range, two values of drag coefficient are found for the streamlined point, of which the lower value is about 1.6 (laminar boundary layer) and the larger value is about 2.6 (turbulent boundary layer), confirming that the point-shape has a crucial influence on the laminar to turbulent transition of the boundary layer.  相似文献   

10.
Contrary to elite performance that is approaching an asymptote, recent analyses suggested a trend for improvement in veterans. This might be attributable to a disproportionate increase in older age-group participation. We extracted 26 years (1987–2012) of men’s results of a running event in Switzerland, “La Course de l’Escalade” (7.25 km). We investigated trends in performance by five-year age-groups, taking the 10, 20, 30, and 50 fastest in each group, and then the 1st, 5th, and 10th percentiles. Taking the 10, 20, 30 or 50 fastest runners there was a trend for improvement ranging from 0.07 to 0.22 min·year?1 (p < .0001; 95% CI ?0.083 to ?0.049 and p < .0001; 95% CI ?0.250 to ?0.196 respectively) in the elder age-groups. Taking the 1st, 5th, and 10th percentiles there were no trends for improvement, and actual deteriorations up to 0.13 (p < .0001; 95% CI +0.119 to +0.138) min·year?1. Mixed-effect models with repeated measures for runners, confirmed a global deteriorating trend with an estimate of +0.11 min·year?1 (p < .0001; 95% CI +0.107 to +0.116). The results suggest that increases in performance in older runners arise from modifications of sampling from a growing population.  相似文献   

11.
Abstract

Athletes use weighted sled towing to improve sprint ability, but little is known about its biomechanics. The purpose of this study was to investigate the effect of weighted sled towing with two different loads on ground reaction force. Ten physically active men (mean ± SD: age 27.9 ± 1.9 years; stature 1.76 ± 0.06 m; body mass 80.2 ± 9.6 kg) performed 5 m sprints under three conditions; (a) unresisted, (b) towing a sled weighing 10% of body mass (10% condition) and (c) towing a sled weighing 30% of body mass (30% condition). Ground reaction force data during the second ground contact after the start were recorded and compared across the three conditions. No significant differences between the unresisted and 10% conditions were evident, whereas the 30% condition resulted in significantly greater values for the net horizontal and propulsive impulses (P < 0.05) compared with the unresisted condition due to longer contact time and more horizontal direction of force application to the ground. It is concluded that towing a sled weighing 30% of body mass requires more horizontal force application and increases the demand for horizontal impulse production. In contrast, the use of 10% body mass has minimal impact on ground reaction force.  相似文献   

12.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

13.
This work uses numerical methods to investigate the feasibility of modifying an instrument used in speed skating to analyze blades from four different ice sports. The instrument, a handheld rocker gauge, is adapted to create a device that can effectively profile other types of skate blades and bobsleigh runners. Since there are significant differences between short and long-track blades one could expect a difference in the gauges used to study these blades. Despite this expectation, the same gauge is used in both disciplines. The usefulness of these gauges has been proven in speed skating so it is expected that they should also be useful to study hockey blades and bobsleigh runners. To optimize the gauge size for different blade types we digitize the profile of a blade, which we use to simulate gauge data. Then we use that gauge data to reconstruct the profile and compare it to the original digital profile. The result is compared for various gauge sizes and the gauge size is optimized for each of the four disciplines. The only commercially available device seems optimal for bobsleigh and long track speed skating. Smaller gauges are recommended for analyzing short track speed skates and hockey skates.
Louis PoirierEmail:
  相似文献   

14.
The relationship between inappropriate breast support and upper-extremity kinematics for female runners is unclear. The purpose of this study was to investigate the effect of breast support and breast pain on upper-extremity kinematics during running. Eleven female recreational runners with larger breasts (UK D and E cup) completed a 7 min 20 s treadmill run (2.58 m · s?1) in a high and low breast support condition. Multi-planar breast and upper-extremity kinematic data were captured in each breast support condition by eight infrared cameras for 30 s towards the end of the run. Breast pain was rated at the end of each treadmill run using a numeric analogue scale. The high support bra reduced breast kinematics and decreased breast pain (P < 0.05). Upper-extremity kinematics did not differ between breast support conditions (P > 0.05), although some moderate positive correlations were found between thorax range of motion and breast kinematics (r = 0.54 to 0.73). Thorax and arm kinematics do not appear to be influenced by breast support level in female runners with large breasts. A high support bra that offers good multi-planar breast support is recommended for female runners with larger breasts to reduce breast pain.  相似文献   

15.
Abstract

The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; [Vdot]O2peak 61 ml · kg?1 · min?1, s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70%[Vdot]O2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.  相似文献   

16.
The FAST 2.0i numerical model of ice friction was developed for an inclined speed skate blade. It describes ice friction at sliding velocities sufficiently high to produce a lubricating layer of meltwater, which completely separates the ice and slider surfaces (known as the hydrodynamic friction regime). Friction arises from ploughing a groove in the ice and from the shear stress in the lubricating Couette flow. The model takes into account frictional melting, heat conduction into the ice and the lateral squeeze flow of the lubricating liquid. We use the numerical model to calculate the ice–blade contacts, the parameters of the lubricating liquid layer, and the relative importance of the various contributions to the overall friction coefficient. We also use it to perform sensitivity studies and to predict the variation of ice friction during a typical skating stroke. The model results compare favorably with measurements of the ice friction coefficient during speed skating, made by others.  相似文献   

17.
The aim of this study was to determine whether gait cycle characteristics are associated with running economy in elite Kenyan runners. Fifteen elite Kenyan male runners completed two constant-speed running sets on a treadmill (12 km ·h?1 and 20 km ·h?1). VO2 and respiratory exchange ratio values were measured to calculate steady-state oxygen and energy cost of running. Gait cycle characteristics and ground contact forces were measured at each speed. Oxygen cost of running at different velocities was 192.2 ± 14.7 ml· kg?1· km?1 at 12 km· h?1 and 184.8 ± 9.9 ml· kg?1· km?1 at 20 km· h?1, which corresponded to a caloric cost of running of 0.94 ± 0.07 kcal ·kg?1·km?1 and 0.93 ± 0.07 kcal· kg?1· km?1. We found no significant correlations between oxygen and energy cost of running and biomechanical variables and ground reaction forces at either 12 or 20 km· h?1. However, ground contact times were ~10.0% shorter (very large effect) than in previously published literature in elite runners at similar speeds, alongside an 8.9% lower oxygen cost (very large effect). These results provide evidence to hypothesise that the short ground contact times may contribute to the exceptional running economy of Kenyan runners.  相似文献   

18.
Abstract

The aim of this study was to examine how running experience affects leg stiffness (Kleg) and spring-mass characteristics during running stages associated with the onset of blood lactate accumulation (OBLA). Seven trained (66.9?±?4.8?kg; 182?±?4.0?cm; 23.1?±?3.1 years) and 13 untrained (78.5?±?7.6?kg; 182?±?3.0?cm; 20.3?±?1.5 years) runners completed an incremental treadmill run. Running velocity was increased by 1 km.h?1 every four minutes and blood lactate samples were taken at every stage, in addition to a 10?s video recording using ‘Runmatic’. Once 4?mmol?L?1 (OBLA; the second lactate turn point) had been reached one more stage was completed. Spring-mass characteristics across groups and at pre-OBLA, OBLA and post-OBLA were compared. The velocity at OBLA was higher for the trained runners compared to the untrained runners (18?±?0.7 vs 11?±?1.3 km.h?1, p?<?0.001). Kleg was similar between untrained and trained runners across each stage (15.8?±?0.3 vs 14.3?±?0.3 kN.m) and did not change between stages, yet spring-mass characteristics differed between groups. Vertical stiffness increased in the trained runners from pre-OBLA to post-OBLA (45.5?±?3.35–51.9?±?3.61 kN?1), but not in untrained runners (35.0?±?5.2–39.6?±?5.7 kN?1). Kleg was strongly related to Fpeak for trained runners only (r?=?0.79; untrained runners, r?=?0.34). Kleg was unaffected by physiological training status and was maintained across all OBLA stages. Trained runners appear to have optimised their spring-mass system in a homogenous manner, whilst less consistent spring-mass characteristics were observed in untrained runners.  相似文献   

19.
In this study, we compared sprint kinematics of sled towing and vest sprinting with the same relative loads. Twenty athletes performed 30-m sprints in three different conditions: (a) un-resisted, (b) sled towing, and (c) vest sprinting. During sled towing and vest sprinting, external loads of 15% and 20% of body mass were used. Sprint times were recorded over 10 and 30 m. Sagittal-plane high-speed video data were recorded at 5, 15, and 25 m from the start. Relative to the un-resisted condition, sprint time increased (7.5 to 19.8%) in both resisted conditions, resulting mainly from decreased step length ( ? 5.2 to ? 16.5%) with small decreases in step frequency ( ? 2.7 to ? 6.1%). Sled towing increased stance phase duration (14.7 to 26.0%), trunk angle (12.5 to 71.5%), and knee angle (10.3 to 22.7%), and decreased swing phase duration ( ? 4.8 to ? 15.2%) relative to the un-resisted condition. Vest sprinting increased stance phase duration (12.8 to 24.5%) and decreased swing phase duration ( ? 8.4 to ? 14.4%) and trunk angle ( ? 1.7 to ? 13.0%). There were significant differences between the two resisted conditions in trunk, thigh, and knee angles. We conclude that sled towing and vest sprinting have different effects on some kinematics and hence change the overload experienced by muscle groups.  相似文献   

20.
通过分析平昌冬奥会雪车和钢架雪车的赛况及主场优势,探索雪车和钢架雪车的发展规律,力求为我国雪车和钢架雪车项目的发展提供借鉴和参考。收集整理雪车和钢架雪车项目基本信息、平昌冬奥会赛况、获奖运动员信息及主场优势。研究发现:平昌冬奥会雪车和钢架雪车项目获奖运动员身材高大、年龄偏高;雪车和钢架雪车项目运动员跨界、跨项比例非常高;初学雪车和钢架雪车的年龄与运动成绩无直接联系,有丰富运动经历、运动水平较高、年龄略小(20岁以下)的其他项目运动员(田径)可转雪车和钢架雪车,且运动成绩提升速度快,通常在训练两年后,可达世界高级水平;雪车和钢架雪车训练和比赛的赛道极其稀缺,有限的赛道集中在东道主国家,这些国家的运动员较其他国家运动员有更多的时间熟悉赛道,这可能在一定程度上增加获胜的几率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号