首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

2.
一类三元分式不等式及其证明   总被引:1,自引:1,他引:0  
本文旨在介绍几个新颖有趣的三元分式不等式,并给出它们的巧妙证明.例1已知a,b,c为满足abc=1的正数,求证:1/(2 a) 1/(2 b) 1/(2 c)≤1.证明:因bc ca ab≥3(abc)~(1/3)=3,故1-(1/(2 a) 1/(2 b) 1/(2 c)) =1-(bc ca ab 4(a b c) 12)/((2 a)(2 b)(2 c))  相似文献   

3.
从许多参考书上,可以看到如下一个重要不等式: 若a,b,c∈R~ ,则 2/(a b) 2/(b c) 2/(c a)≥9/(a b c)(1) 此不等式呈轮换对称形式,排列整齐,而且  相似文献   

4.
1963年,一道经典的不等式题在莫斯科数学竞赛中应运而生,原题如下:设 a,b,c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2.①这个不等式的证法很多,下面笔者给出两个最简单的证明过程.证法1:要证原不等式成立,只须证 a/(b+c)+1+b/(c+a)+1+c/(a+b)+1≥9/2,即只须证[2(a+b+c)](1/(b+d)+1/(c+a)+1/(a+b))≥9,由柯西不等式易知上式显然成立,所以原不等式  相似文献   

5.
该不等式可用归纳法证明,现在来看它在解数学竞赛题中的几个应用。 例1 设a、b、c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (1988,友谊杯竞赛)  相似文献   

6.
鉴于近年来发表的一些文章中关于不等式的对称与轮换对称这两个概念及性质运用模糊,往往导致错误,笔者就此问题作初步的探讨,供大家参考。 一、关于不等式对称与轮换对称的定义 在一个不等式中,若把其中任何两个字母a_i和a_j(i,i=1,2,…,n,且i≠j)对调位置后,这个不等式不变(如①:a/(b c) b/(c a) c/(a b)≥3/2,其中a,b,c>0),我们便称此不等式是关于a_1、a_2、…、a_n对称的,如果把不等式中的卞母a_1、a_2、…;a_n按一定顺序顺次替换(如将a_1换成a_2,a_2换成a_3,…,a_(n-1)换成a_n,a_n换成a_1)后不等式不变(如②:(b~2-c~2)/(a b) (c~2-a~2)/(b c) (a~2-b~2)/(c a)≥0,其中a,b,c∈R~ ),我们便称此不等式是关于a_1、a_2、…、a_n轮换对  相似文献   

7.
一个不等式变形的应用   总被引:1,自引:0,他引:1  
著名的Jacobsthal不等式定义为): 设x≥0,y≥0,对任意正整数n,则有x~n (n-1)y~n≥(nxy)~(n-1). 当y>0时,可变形为x~n/y~(n-1)≥nx-(n-1)y.(*) (*)式实际上也可看作一个降幂型不等式,从而看出对于一些次数较高的不等式,可以通过(*)式转化成低次来处理,下举例说明. 例1 设a,b,c为正数,求证: a~2/(b c) b~2/(c a) c~2/(a b)≥(a b c)/2. (第二届“友谊杯”国际数学邀请赛题) 证明 由(*)式,注意到 4a~2/(b c)=(2a)~2/(b c)≥2(2a)-(b c)=4a-b  相似文献   

8.
正2009伊朗国家集训队一道试题:设a,b,c是正数,且a+b+c=3,证明:(1/(2+b~2+c~2))+(1/(2+c~2+a~2))+(1/(2+a~2+b~2))≤3/4(1)试题公开以来,国内许多杂志先后刊出多种证明,推广该试题的文章.各种不同的证明思路与方法令人拍案称奇.笔者自叹弗如.转而探求该不等式是否存在下界.结果发现不等式(1)确实存在正的下界一也许不是最强下界.且所用知识与方法均不超  相似文献   

9.
<正> 本文给出一个条件不等式的10种证法,从中可以看出条件不等式证明的一些常用思想方法.同时给出几个常见结论及其推广.已知:a、b、c是正数且a+b+c=1,求证:a2+b2+c2≥1/3.思路1 这是一个对称不等式,取等号的条件应为a=b=c=  相似文献   

10.
(2021奥地利数学奥林匹克不等式)已知a,b,c∈R+,a+b+c=1,求证:a/2a+1+b/3b+1+c/6c+1≤1/2(1).本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.1.不等式(1)的证法分析1:不等式(1)的左端每一项的结构相同,但遗憾的是分母的系数不等,注意到每一项的特点,因此可通过证明局部不等式,再叠加.  相似文献   

11.
第31届IMO备选题中,有一道不等式证明的试题,我们把它表述为:命题2 设a、b、c、d为非负实数,且满足 ab bc cd da=1,则a~3/(b c d) b~3/(a c d) c~3/(a b d) d~3/(a b c)≥1/3综合条件与结论,就是:命题2 对于a、b、c、d∈R~ ,有a~3/(b c d) b~3/(a c c) c~3/(a b c) d~3(a b c)≥1/3(ab bc cd a).仔细研究,不难发现,命题2的雏形是常见的  相似文献   

12.
文[1]例4给出了不等式:“a~2/(b c-a) b~2/(c a-b) c~2/(a b-c)≥a b c,其中 a,b,c 为△ABC 三边”的证明.它采用逆用等比数列各项和的证明方法,其思路新颖,但证题过程繁琐,不利于学生理解与掌握.本文从柯西不等式着手推导出两个结论,并对文[1]例4给出另一种独特简洁的证法,然后对推论作一简单的运用.在初等数学中常遇到如下不等式:  相似文献   

13.
设a、b、c、d是满足ab bc cd da=1的非负实数,求证:a~2/(b c d) b~2/(a c d) c~2/(a b d) d~2/(a b c)≥1/3.此题为第31届I MO由泰国提供的予选题.文〔1〕~〔3〕已给出不同证明方法;文〔12〕予以推广.本文再给出新的证明方法及再推广.为行文方便,记A=b ac3 d b3a c d a cb3 d a  相似文献   

14.
本刊2007年第4期解题擂台(86)提出如下分式型不等式命题:设a、b、c是正实数,且a b c=1,求证:1a 1b 1c≥1 2458abc(1)上述不等式(1)是成立的,笔者运用代换方法给出它的一个证明.证明因(1)式是对称的,故可设a≥b≥c,令a=12 k①得-61≤k≤21,b-c=t(t≥0),∵a b c=1,∴b=1-24k 2t②  相似文献   

15.
命题 设△ABC的三边长分别为a、b、c,旁切圆半径分别为r_a、r_b、r-c.则 (a/(r_a))~n (b/(r_b))~n (c/(r_c))~n≥2~n·3~(1-n/2)(n>0). (1) 证明:由算术—几何平均值不等式得  相似文献   

16.
2005年罗马尼亚的一道数学竞赛题为:已知a、b、c为正实数.证明:a+b/c2+b+c/a2+c+a/b2≥2(1/a+1/b+1/c). 这是一道关于三个变元a、b、c对称的分式不等式,从这个不等式出发,将其引申拓广,可得两个有趣的无穷长的代数不等式链,即有以下两个命题中的不等式链成立.  相似文献   

17.
文 [1 ]给出了如下一道征解题 :设 a,b,c均为正实数 ,证明 :ab(a b) bc(b c) ca(c a)≤ 32 (a b) (b c) (c a) . (1 )它的证明方法主要是借助于几何背景 ,其证明过程也不够简单 .本文给出一种代数证明 ,其过程简捷 ,并且利用这种证法可以将(1 )推广 .证 在 (1 )的不等式两端同除以(a b) (b c) (c a)便可得 :ac a· bb c ba b· cc a   cb c· aa b≤ 32 . (2 )因此 ,我们只需证明 (2 )成立即可 ,而对于 (2 ) ,我们又可以利用基本不等式 :算术平均≥几何平均 ,故有ac a· bb c ba b· cc a   cb c· aa …  相似文献   

18.
在本文中约定a,b,c为ΔABC的三边,s为半周长,R,r分别为ΔABC的外接圆半径与内切圆半径.1916年,M.Petrovic建立了如下涉及三角形三边的不等式[1,p.8]:1/3≤a2+b2+c2/(a+b+c)2<1/22000年,朱杏华[2]将不等式(1)推广到了n维单形.2008年,李华和张[5]将不等式(1)推广到了n边形.2009年,武爱民[4]对不等式(1)作了指数推广.其实早在  相似文献   

19.
2019年全国卷Ⅰ理科数学第23题出人意料地考查纯粹的基本不等式,要求学生能灵活使用二元以及三元均值不等式.本文经过深入探究,首先给出第23题的多种证明方法,然后将该题的结论推广到一般形式.试题(2019·全国卷Ⅰ·理23)已知a、b、c为正数,且满足abc=1.证明:(1)1 a+1 b+1 c≤a 2+b 2+c 2;(2)(a+b)3+(b+c)3+(c+a)3≥24.首先给出第(1)问的两种证明方法.  相似文献   

20.
有一类分式不等式的证明在数学竞赛中经常出现,它的特点是不等式的一边各项形如 a2/(a±b)、a2/(b±c)、a/(a±b)或a/(b±c)的式子,通过构造向量并利用|a|·|b|≥|a·b|,可得到这类分式不等式的简捷证法,且构造向量的方法思路单一,操作简便,现举例说明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号