首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

2.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

3.
文[1]提出了猜想如下:猜想若a、b、c是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.文[2]给出了该猜想的肯定性证明,并给出了一个推广:命题1设a_k为正实数,  相似文献   

4.
2013年OlympicRevenge 第3题为: 已知a,b,c,d是满足ab+ ac+ad+ bc+ bd+ cd =6的正数,求证:1/a2+1+1/b2+1+1/c2+1+1/d2+1≥2.(1) 文[1]退化思考得到 命题4 已知a,b,c是满足ab+bc+ca =3的正数,求证:1/a2+1+1/b2+1+1/c2+1≥3/2.(2) 在(2)式中令a=√tanA/2,b=√3tanB/2,c=√3tanC/2,则命题4可变为:  相似文献   

5.
2019年全国卷Ⅰ理科数学第23题出人意料地考查纯粹的基本不等式,要求学生能灵活使用二元以及三元均值不等式.本文经过深入探究,首先给出第23题的多种证明方法,然后将该题的结论推广到一般形式.试题(2019·全国卷Ⅰ·理23)已知a、b、c为正数,且满足abc=1.证明:(1)1 a+1 b+1 c≤a 2+b 2+c 2;(2)(a+b)3+(b+c)3+(c+a)3≥24.首先给出第(1)问的两种证明方法.  相似文献   

6.
本期问题 初343已知x、y为正实数,n∈N,且n≥2.证明: n√x+(2n-1)y/x+n√y+(2n-1)x/y≥4. 初344 在边长为2的正方形ABCD中,动点E、F均在边AD上,满足AE=DF,联结CF与对角线BD交于点Q,联结AQ、BE交于点P.求DP的最小值. 高343设a、b、c>0,且abc=1,λ(λ≥1)为常数.证明:a1/a+b+λ+1/b+c+λ+1/ρ+δ+λ≤3/2+,当且仅当a=b=c=1时,上式等号成立.  相似文献   

7.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

8.
文[1]-[4]研究了如下几个有意思的不等式: 问题1:已知a,b,c为正实数,求证:(a2+ b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b) 问题2:已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+ b-c)(b+c-a)(c+a-b) 问题3:若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

9.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

10.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

11.
题目设a,b,c是正实数,且a+b+c=1,则有(1/(b+c)-a)(1/(c+a)-b)(1/(a+b)-c)≥(7/6)~3(1)当且仅当a=b=c=了1时取到等号.文[1][2]给出了不同的证明方法,本文再给出更简单的证明方法.证明:注意到b~2-b+1=(b-1/3)~2+1/9(8-3b)≥1/9(8-3b),同理有c~2-c+1≥1/9(8-3c),  相似文献   

12.
文[1]中提出并证明了一个不等式:已知正数a,b满足a+b=1,m,n是正数满足m+n≥4,求证:(1/a^m-a^n)(1/b^m-b^n)≥(2^m+n-1/2^n)^2(1).进而提出一个加强式:已知正数a,b满足a+b=1,k是整数且k≥3,求证:(1/a-a^k)(1/b-b^k)≥(2^k+1-1/2^k)^2(2).  相似文献   

13.
正安振平老师提出的"二十六个优美不等式"中第14个是:设a、b、c为非负实数且a+b+c=1,求证:(1-a)22+(1-b)22+(1-c)22≤6427.该题在很多刊物都有证明,尽管证法各有千秋都很精彩,但方法都很复杂,有些也难于想到,笔者将不等式左边稍作调整就可以反复应用切比雪夫不等式,轻松证出,不仅如此,还可以轻松将不等式横向和纵向加以推广.证明:不妨假设a≥b≥c≥0,则1+a≥1+b≥1+c,1-a≤1-b≤1-c,由切比雪夫不等式可知:(1-a)22+(1-b)22+(1-c)22  相似文献   

14.
陕西安振平老师在文[1][2]两次提出了如下一个颇有难度的无理不等式猜想,即已知a,b,c为正实数,则(a2/(a2+26bc))1/3+(b2/(b2+26ac))1/3+(c2/(c2+26ab))1/3≥1.(1)笔者经过一年多研究发现这个猜想不等式是成立的,现给出证明.证明:设x=(bc)/(a2),y=(ac)/(b2),z=(ab)/(c2),则不等式(1)等价于下面命题,即x,y,z为正实数且xyz=1.则  相似文献   

15.
题目 设a,b,c是正数,n是正整数,求证:a/n√an+(3n-1)bn/2cn/2+b/n√bn(3n-1)an/2cn/2c/n√cn+(3n-1)an/2bn/2≥1. 文[1]给出了该不等式的极限证明.文[2]用拉格朗日条件极值法给出了证明.这两种方法都不易理解,文[3]中我们给出一个初等证明.本文再用反证法给出一个新的证明.  相似文献   

16.
题目 已知正实数a,b,c满足abc=1,证明:1/a5(b+2c)2+1/b5(c+2a)2+1/c2(a+2b≥1/3. 这是2010年美国国家队选拔考试第二题,刊在《中等数学》2012年第8期上,参考答案上通过构造两个和式,连续二次运用柯西不等式进行证明,显得有些繁琐,本题其实可以利用基本不等式得到简捷证明.  相似文献   

17.
<正>某些非一元二次方程的问题,如果能抓住特征,那么可以通过构造一元二次方程来解决,例说如下.一、利用已知等式构造一元二次方程例1若a,b,c为实数,且a2+b2+c2-ab-bc-ca=0,求证:a=b=c.证明由已知等式,可构造关于c的一元二次方程c2-(a+b)c+(a2+b2-ab)=0.∵c为实数,∴Δ=[-(a+b)]2-4(a2+b2-ab)  相似文献   

18.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

19.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;c~2/2+c  相似文献   

20.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号