首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The primary roles for nutrition in sprints are for recovery from training and competition and influencing training adaptations. Sprint success is determined largely by the power-to-mass ratio, so sprinters aim to increase muscle mass and power. However, extra mass that does not increase power may be detrimental. Energy and protein intake are important for increasing muscle mass. If energy balance is maintained, increased mass and strength are possible on a wide range of protein intakes, so energy intake is crucial. Most sprinters likely consume ample protein. The quantity of energy and protein intake necessary for optimal training adaptations depends on the individual athlete and training demands; specific recommendations for all sprinters are, at best, useless, and are potentially harmful. However, if carbohydrate and fat intake are sufficient to maintain energy levels, then increased protein intake is unlikely to be detrimental. The type and timing of protein intake and nutrients ingested concurrently must be considered when designing optimal nutritional strategies for increasing muscle mass and power. On race day, athletes should avoid foods that result in gastrointestinal discomfort, dehydration or sluggishness. Several supplements potentially influence sprint training or performance. Beta-alanine and bicarbonate may be useful as buffering agents in longer sprints. Creatine may be efficacious for increasing muscle mass and strength and perhaps increasing intensity of repeat sprint performance during training.  相似文献   

2.
Opinion on the role of protein in promoting athletic performance is divided along the lines of how much aerobic-based versus resistance-based activity the athlete undertakes. Athletes seeking to gain muscle mass and strength are likely to consume higher amounts of dietary protein than their endurance-trained counterparts. The main belief behind the large quantities of dietary protein consumption in resistance-trained athletes is that it is needed to generate more muscle protein. Athletes may require protein for more than just alleviation of the risk for deficiency, inherent in the dietary guidelines, but also to aid in an elevated level of functioning and possibly adaptation to the exercise stimulus. It does appear, however, that there is a good rationale for recommending to athletes protein intakes that are higher than the RDA. Our consensus opinion is that leucine, and possibly the other branched-chain amino acids, occupy a position of prominence in stimulating muscle protein synthesis; that protein intakes in the range of 1.3-1.8 g · kg(-1) · day(-1) consumed as 3-4 isonitrogenous meals will maximize muscle protein synthesis. These recommendations may also be dependent on training status: experienced athletes would require less, while more protein should be consumed during periods of high frequency/intensity training. Elevated protein consumption, as high as 1.8-2.0 g · kg(-1) · day(-1) depending on the caloric deficit, may be advantageous in preventing lean mass losses during periods of energy restriction to promote fat loss.  相似文献   

3.
小针刀治疗肌肉损伤的组织学和生物力学研究   总被引:3,自引:0,他引:3  
采用不完全锐性切割的方法对实验兔双后肢造成损伤模型 ,左腿为自然恢复组 ,右腿为小针刀治疗组 ,分别于损伤后 1 0天、2 0天、2 8天取材 ,进行组织学观察和生物力学指标测试 ,观察小针刀治疗后受损肌肉的组织学和生物力学指标的变化 ,为小针刀疗法提供理论依据 ,为瘢痕性软组织运动损伤探索一种行之有效的治疗方法。结果表明 :通过光镜观察发现 ,伤后 2 0天和 2 8天 ,小针刀治疗组与自然恢复组相比 ,肌纤维面积都显著增加 ( P<0 .0 1 )。治疗组肌肉的强度极限和最大伸长量均高于自然恢复组 ,但无显著性差异。提示 :小针刀疗法可以促进损伤部位的肉芽组织转化 ,松解损伤组织间的粘连 ,减轻肌纤维间结缔组织增生 ,促进受损肌肉的恢复 ,对运动中经常发生的软组织损伤有独到的疗效  相似文献   

4.
康复性体能训练是体能训练领域较新的研究和实践方向,同时发展也较为迅速,它为运动员的损伤预防和伤病恢复提供了很好的解决方向和方法。程**,中国柔道队队员,2012年10月,腰部出现不适,大强度训练后出现疼痛,后经诊断为腰肌劳损。基于此,研究运用等速肌力测试、体成份测试和功能检查等方法对程**的身体功能情况进行系统的阶段性的评估,并根据腰部损伤情况制定针对性的康复体能训练计划。经过3个阶段25周的康复性体能训练后,程**腰肌劳损的伤病得到了很好的恢复,并且体能水平得到了较大程度的提高,这为其在12届全国运动会上取得冠军的比赛成绩打下了坚实的基础。  相似文献   

5.
Carbohydrates and fat for training and recovery   总被引:3,自引:0,他引:3  
An important goal of the athlete's everyday diet is to provide the muscle with substrates to fuel the training programme that will achieve optimal adaptation for performance enhancements. In reviewing the scientific literature on post-exercise glycogen storage since 1991, the following guidelines for the training diet are proposed. Athletes should aim to achieve carbohydrate intakes to meet the fuel requirements of their training programme and to optimize restoration of muscle glycogen stores between workouts. General recommendations can be provided, preferably in terms of grams of carbohydrate per kilogram of the athlete's body mass, but should be fine-tuned with individual consideration of total energy needs, specific training needs and feedback from training performance. It is valuable to choose nutrient-rich carbohydrate foods and to add other foods to recovery meals and snacks to provide a good source of protein and other nutrients. These nutrients may assist in other recovery processes and, in the case of protein, may promote additional glycogen recovery when carbohydrate intake is suboptimal or when frequent snacking is not possible. When the period between exercise sessions is < 8 h, the athlete should begin carbohydrate intake as soon as practical after the first workout to maximize the effective recovery time between sessions. There may be some advantages in meeting carbohydrate intake targets as a series of snacks during the early recovery phase, but during longer recovery periods (24 h) the athlete should organize the pattern and timing of carbohydrate-rich meals and snacks according to what is practical and comfortable for their individual situation. Carbohydrate-rich foods with a moderate to high glycaemic index provide a readily available source of carbohydrate for muscle glycogen synthesis, and should be the major carbohydrate choices in recovery meals. Although there is new interest in the recovery of intramuscular triglyceride stores between training sessions, there is no evidence that diets which are high in fat and restricted in carbohydrate enhance training.  相似文献   

6.
An important goal of the athlete's everyday diet is to provide the muscle with substrates to fuel the training programme that will achieve optimal adaptation for performance enhancements. In reviewing the scientific literature on post-exercise glycogen storage since 1991, the following guidelines for the training diet are proposed. Athletes should aim to achieve carbohydrate intakes to meet the fuel requirements of their training programme and to optimize restoration of muscle glycogen stores between workouts. General recommendations can be provided, preferably in terms of grams of carbohydrate per kilogram of the athlete's body mass, but should be fine-tuned with individual consideration of total energy needs, specific training needs and feedback from training performance. It is valuable to choose nutrient-rich carbohydrate foods and to add other foods to recovery meals and snacks to provide a good source of protein and other nutrients. These nutrients may assist in other recovery processes and, in the case of protein, may promote additional glycogen recovery when carbohydrate intake is suboptimal or when frequent snacking is not possible. When the period between exercise sessions is <8?h, the athlete should begin carbohydrate intake as soon as practical after the first workout to maximize the effective recovery time between sessions. There may be some advantages in meeting carbohydrate intake targets as a series of snacks during the early recovery phase, but during longer recovery periods (24?h) the athlete should organize the pattern and timing of carbohydrate-rich meals and snacks according to what is practical and comfortable for their individual situation. Carbohydrate-rich foods with a moderate to high glycaemic index provide a readily available source of carbohydrate for muscle glycogen synthesis, and should be the major carbohydrate choices in recovery meals. Although there is new interest in the recovery of intramuscular triglyceride stores between training sessions, there is no evidence that diets which are high in fat and restricted in carbohydrate enhance training.  相似文献   

7.
本文旨在为摸索髌骨骨折保守治疗的康复训练提供思维方法和实践体会。郑裕蒿在髌骨骨折后,通过10周的康复训练,恢复后1个月获得全国第十届运动会武术男子散打77.5kg级别的决赛权并在随后的决赛中荣获冠军。10周康复训练中主要采用肌力练习、关节活动度练习、耐力训练、神经肌肉本体感觉训练等一系列运动疗法,阶段性进行运动功能评定,制定一系列康复训练阶段性目标及预案。结果认为,骨折的康复训练计划以医学检查(临床表现、影像学诊断)、物理及传统治疗方法为前提,依据运动专项特点,制定阶段性个体化运动处方,会有效缩短伤病恢复时间。  相似文献   

8.
For the athlete training hard, nutritional supplements are often seen as promoting adaptations to training, allowing more consistent and intensive training by promoting recovery between training sessions, reducing interruptions to training because of illness or injury, and enhancing competitive performance. Surveys show that the prevalence of supplement use is widespread among sportsmen and women, but the use of few of these products is supported by a sound research base and some may even be harmful to the athlete. Special sports foods, including energy bars and sports drinks, have a real role to play, and some protein supplements and meal replacements may also be useful in some circumstances. Where there is a demonstrated deficiency of an essential nutrient, an increased intake from food or from supplementation may help, but many athletes ignore the need for caution in supplement use and take supplements in doses that are not necessary or may even be harmful. Some supplements do offer the prospect of improved performance; these include creatine, caffeine, bicarbonate and, perhaps, a very few others. There is no evidence that prohormones such as androstenedione are effective in enhancing muscle mass or strength, and these prohormones may result in negative health consequences, as well as positive drug tests. Contamination of supplements that may cause an athlete to fail a doping test is widespread.  相似文献   

9.
For the athlete training hard, nutritional supplements are often seen as promoting adaptations to training, allowing more consistent and intensive training by promoting recovery between training sessions, reducing interruptions to training because of illness or injury, and enhancing competitive performance. Surveys show that the prevalence of supplement use is widespread among sportsmen and women, but the use of few of these products is supported by a sound research base and some may even be harmful to the athlete. Special sports foods, including energy bars and sports drinks, have a real role to play, and some protein supplements and meal replacements may also be useful in some circumstances. Where there is a demonstrated deficiency of an essential nutrient, an increased intake from food or from supplementation may help, but many athletes ignore the need for caution in supplement use and take supplements in doses that are not necessary or may even be harmful. Some supplements do offer the prospect of improved performance; these include creatine, caffeine, bicarbonate and, perhaps, a very few others. There is no evidence that prohormones such as androstenedione are effective in enhancing muscle mass or strength, and these prohormones may result in negative health consequences, as well as positive drug tests. Contamination of supplements that may cause an athlete to fail a doping test is widespread.  相似文献   

10.
Sarcopenia机制研究进展   总被引:4,自引:0,他引:4  
李海鹏  卢健  陈彩珍 《体育科学》2007,27(11):66-69,82
Sarcopenia是一种以肌肉质量、体积以及肌肉力量下降为主要特征的中老年人高发病征,其发生与肌肉特异性蛋白合成减少、线粒体功能紊乱、激素水平下降、氧化损伤增加以及细胞凋亡等有着密切的关系,抗阻运动在一定程度上可以延缓Sarcopenia的发生。综述了Sarcopenia发生机制,展望了Sarcopenia的研究前景。  相似文献   

11.
Abstract

Post-exercise recovery is a multi-facetted process that will vary depending on the nature of the exercise, the time between exercise sessions and the goals of the exerciser. From a nutritional perspective, the main considerations are: (1) optimisation of muscle protein turnover; (2) glycogen resynthesis; (3) rehydration; (4) management of muscle soreness; (5) appropriate management of energy balance. Milk is approximately isotonic (osmolality of 280–290?mosmol/kg), and the mixture of high quality protein, carbohydrate, water and micronutrients (particularly sodium) make it uniquely suitable as a post-exercise recovery drink in many exercise scenarios. Research has shown that ingestion of milk post-exercise has the potential to beneficially impact both acute recovery and chronic training adaptation. Milk augments post-exercise muscle protein synthesis and rehydration, can contribute to post-exercise glycogen resynthesis, and attenuates post-exercise muscle soreness/function losses. For these aspects of recovery, milk is at least comparable and often out performs most commercially available recovery drinks, but is available at a fraction of the cost, making it a cheap and easy option to facilitate post-exercise recovery. Milk ingestion post-exercise has also been shown to attenuate subsequent energy intake and may lead to more favourable body composition changes with exercise training. This means that those exercising for weight management purposes might be able to beneficially influence post-exercise recovery, whilst maintaining the energy deficit created by exercise.  相似文献   

12.
目的:从胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)和转化生长因子-β1(transforming growth factor-β1,TGF-β1)的动态变化规律理解骨骼肌纤维化的发生机制。方法:健康雄性Sprague-Dawley大鼠随机分为对照组和模型组。模型组进一步分为损伤后第1、2、3、7、14、21和28天组。模型组采用局部钝物打击造成急性骨骼肌钝挫伤。免疫组织化学法同步观察大鼠骨骼肌纤维化形成过程中IGF-1、TGF-β1的表达,并采用有序样品聚类分析方法对表达强度变化进行分期。结果:1)模型组IGF-1在损伤区域的表达显著上调,除了表达于再生肌纤维外,在肉芽组织和增生的结缔组织中也可见阳性表达,在塑型期尤为明显。模型组IGF-1表达强度呈倒"V"字形变化,可分为3期:损伤后第1~7天为第1期,损伤后第14~21天为第2期,损伤后第28天为第3期,其中第2期最高。2)模型组TGF-β1表达显著上调,主要表达于新生肌细胞和细胞间质,表达强度呈现"V"字形变化,也分为3期:损伤后第1~2天为第1期,损伤后第3~14天为第2期,损伤后第21~28天为第3期,其中第2期最低。结论:IGF-1、TGF-β1在骨骼肌损伤修复过程中均高水平表达。在损伤期和修复期,二者可能共同参与骨骼肌再生和细胞外基质再生,并且可能存在协同作用。在组织塑型期,二者均高水平表达于细胞间质(特别是增生的结缔组织),二者可能共同参与了骨骼肌纤维化的形成。  相似文献   

13.
Contemporary training for power sports involves diverse routines that place a wide array of physiological demands on the athlete. This requires a multi-faceted nutritional strategy to support both general training needs--tailored to specific training phases--as well as the acute demands of competition. Elite power sport athletes have high training intensities and volumes for most of the training season, so energy intake must be sufficient to support recovery and adaptation. Low pre-exercise muscle glycogen reduces high-intensity performance, so daily carbohydrate intake must be emphasized throughout training and competition phases. There is strong evidence to suggest that the timing, type, and amount of protein intake influence post-exercise recovery and adaptation. Most power sports feature demanding competition schedules, which require aggressive nutritional recovery strategies to optimize muscle glycogen resynthesis. Various power sports have different optimum body compositions and body weight requirements, but increasing the power-to-weight ratio during the championship season can lead to significant performance benefits for most athletes. Both intra- and extracellular buffering agents may enhance performance, but more research is needed to examine the potential long-term impact of buffering agents on training adaptation. Interactions between training, desired physiological adaptations, competition, and nutrition require an individual approach and should be continuously adjusted and adapted.  相似文献   

14.
Abstract

Several nutritional strategies can optimize muscle bulk and strength adaptations and enhance recovery from heavy training sessions. Adequate energy intake to meet the needs of training and carbohydrate intake sufficient to maintain glycogen stores (>7 g carbohydrate·kg?1·day?1 for women; >8 g carbohydrate·kg?1·day?1 for men) are important. Dietary protein intake for top sport athletes should include some foods with high biological value, with a maximum requirement of approximately 1.7 g·kg?1·day?1 being easily met with an energy sufficient diet. The early provision of carbohydrate (>1 g·kg?1) and protein (>10 g) early after an exercise session will enhance protein balance and optimize glycogen repletion. Creatine monohydrate supplementation over several days increases body mass through water retention and can increase high-intensity repetitive ergometer performance. Creatine supplementation can enhance total body and lean fat free mass gains during resistance exercise training; however, strength gains do not appear to be enhanced versus an optimal nutritional strategy (immediate post-exercise protein and carbohydrate). Some studies have suggested that β-OH-methyl butyric acid (β-HMB) can enhance gains made through resistance exercise training; however, it has not been compared “head to head” with optimal nutritional practices. Overall, the most effective way to increase strength and bulk is to perform sport-specific resistance exercise training with the provision of adequate energy, carbohydrate, and protein. Creatine monohydrate and β-HMB supplementation may enhance the strength gains made through training by a small margin but the trade-off is likely to be greater bulk, which may be ergolytic for any athlete participating in a weight-supported activity.  相似文献   

15.
Current nutrition and exercise focus during rehabilitation periods has been on reducing muscle atrophy associated with immobilisation. This case report outlines a best practice anterior cruciate ligament (ACL) rehabilitation programme undertaken by two professional rugby athletes, with the addition of an evidence-based supplementation (gelatine and vitamin C) and exercise protocol focused on collagenous tissue. Both players ruptured their left ACL and were repaired with a traditional hamstring graft. Players undertook a structured rehabilitation programme for 34 weeks before being clinically assessed ready to play. Players saw minimal changes in body composition in the early rehabilitation period (P1 – 0.8 kg; P2 – 0.4 kg). Leg lean mass reduced in both legs of Player 1 (Injured – 0.8 kg, Non-injured – 0.6 kg) at 17 weeks, with Player 2 only experiencing a loss of 0.3 kg of lean tissue in the injured leg. Both players returned to baseline body compositions after 24 weeks. Leg strength returned to a maximum at 24 and 15 weeks, respectively, with knee function returning to baseline by 30 weeks. This case report provides evidence that nutrition and rehabilitation programmes targeted at minimising the effects of disuse in both muscle and connective tissue may assist return to play after ACL injury.  相似文献   

16.
Abstract

A large body of evidence now shows that higher protein intakes (2–3 times the protein Recommended Dietary Allowance (RDA) of 0.8 g/kg/d) during periods of energy restriction can enhance fat-free mass (FFM) preservation, particularly when combined with exercise. The mechanisms underpinning the FFM-sparing effect of higher protein diets remain to be fully elucidated but may relate to the maintenance of the anabolic sensitivity of skeletal muscle to protein ingestion. From a practical point of view, athletes aiming to reduce fat mass and preserve FFM should be advised to consume protein intakes in the range of ~1.8–2.7 g kg?1 d?1 (or ~2.3–3.1 g kg?1 FFM) in combination with a moderate energy deficit (?500 kcal) and the performance of some form of resistance exercise. The target level of protein intake within this recommended range requires consideration of a number of case-specific factors including the athlete's body composition, habitual protein intake and broader nutrition goals. Athletes should focus on consuming high-quality protein sources, aiming to consume protein feedings evenly spaced throughout the day. Post-exercise consumption of 0.25–0.3 g protein meal?1 from protein sources with high leucine content and rapid digestion kinetics (i.e. whey protein) is recommended to optimise exercise-induced muscle protein synthesis. When protein is consumed as part of a mixed macronutrient meal and/or before bed slightly higher protein doses may be optimal.  相似文献   

17.
离心收缩训练对肌肉力量和肌电图RMS值的影响   总被引:10,自引:1,他引:9  
为了研究离心训练对肌肉机能的影响,对18名运动员进行不同负荷的离心收缩训练,研究股四头肌和股二头肌肌肉力量和肌电图RMS值的变化,发现离心收缩训练对改善运动员的肌肉力量有明显效果,采用150%离心收缩训练和120%离心收缩训练对运动员肌电图RMS值也有一定的改善作用。  相似文献   

18.
There are few studies on the relationship between skeletal muscle mass and balance in the young ages. We investigated the relationship between appendicular skeletal muscle mass, isokinetic muscle strength of lower extremity, and balance among healthy young men using relative skeletal muscle index. Thirty men were grouped according to relative appendicular skeletal muscle mass index: higher skeletal muscle group (n = 15) and lower skeletal muscle group (n = 15). Static and dynamic balance abilities were measured using the following: a test where participants stood on one leg with eyes closed, a modified Clinical Test of Sensory Interaction on Balance (mCTSIB) with eyes open and eyes closed, a stability test, and limits of stability test. The muscle strength of lower extremities was measured with an isokinetic analyser in hip, knee, and ankle joints. Participants with higher appendicular skeletal muscle mass were significantly more stable in maintaining dynamic balance than those with lower appendicular skeletal muscle mass. Moreover, appendicular skeletal muscle mass index was positively correlated with dynamic balance ability. Participants with higher appendicular skeletal muscle mass had stronger strength in the lower extremity, and there were significant differences in the isokinetic torque ratios between groups. From these results, it can be inferred that higher appendicular skeletal muscle mass relates to muscle strength and the alteration in the peak torque ratio of the lower extremity, contributing to the maintenance of balance.  相似文献   

19.
Strength and power athletes are primarily interested in enhancing power relative to body weight and thus almost all undertake some form of resistance training. While athletes may periodically attempt to promote skeletal muscle hypertrophy, key nutritional issues are broader than those pertinent to hypertrophy and include an appreciation of the sports supplement industry, the strategic timing of nutrient intake to maximize fuelling and recovery objectives, plus achievement of pre-competition body mass requirements. Total energy and macronutrient intakes of strength-power athletes are generally high but intakes tend to be unremarkable when expressed relative to body mass. Greater insight into optimization of dietary intake to achieve nutrition-related goals would be achieved from assessment of nutrient distribution over the day, especially intake before, during, and after exercise. This information is not readily available on strength-power athletes and research is warranted. There is a general void of scientific investigation relating specifically to this unique group of athletes. Until this is resolved, sports nutrition recommendations for strength-power athletes should be directed at the individual athlete, focusing on their specific nutrition-related goals, with an emphasis on the nutritional support of training.  相似文献   

20.
王军 《湖北体育科技》2002,21(3):294-295
经过多年的武术带队训练和跟踪调查,发现武术训练当中引起的运动损伤大部分为大腿后部肌群Guo绳肌的拉伤,如何预防和处理Guo绳肌损伤成为提高武术水平的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号