首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
分析了AlGaN/GaN HEMT器件的结构及特性,2DEG的浓度与器件的电学特性的关系。在仿真软件ATLAS上构建器件模型,对器件的转移特性和输出特性进行了模拟仿真,并对仿真结果进行分析。  相似文献   

2.
《科技风》2017,(8)
二维电子气(2DEG)特性决定了AlGaN/GaN高电子迁移率晶体管(HEMT)性能。为了提高器件的2DEG密度、迁移率和漏电流,本文采用AlGaN和GaN之间引入一层薄的Al N间隔层的方法。使用Silvaco仿真工具模拟了不同AlN间隔层厚度对载流子浓度、迁移率和量子阱深度的影响。器件仿真结果表明:在HEMT器件中插入薄AlN间隔层可以增加载流子浓度和迁移率,并加大了导带不连续性。另外,器件的电子迁移率在AlN厚度为0.2nm时取得最大值,而载流子浓度和漏电流随AlN层厚度增加而持续上升。  相似文献   

3.
LED照明是一种节能环保的新型照明技术,1986年,日本名古屋工业大学发明了生长GaN(氮化镓)的新方法,GaN基材料和器件很快成了研究的热点。在国内,北京大学人工微结构和介观物理国家重点实验室于1990年筹建金属有机化合物气相沉积实验室,  相似文献   

4.
《科学中国人》2010,(2):56-56
近日,毫米波GaN功率器件在中科院微电子研究所微波器件与集成电路研究室(四室)研制成功。 GaN器件和电路是一直是国内外的研究热点,在光电子和微电子领域有着广阔的应用前景。  相似文献   

5.
正专家简介:谢自力,南京大学电子科学与工程学院教授,南京南大光电工程研究院有限公司总经理。主要从事氮化物半导体材料MOCVD生长、器件结构设计、GaN基紫外光电探测器和太阳电池的结构设计与器件研发工作。"九五"期间,曾任原"863"计划半导体材料领域GaAs单晶材料评审专家。在InN材料、GaN基紫外探测器、InGaN太阳能电池研究以及氮化物发光二极管研究等领域分别取得了国际先进水平的研究成果。  相似文献   

6.
<正>pointSOI技术和应变硅技术的广泛应用和融合大大提升了新型应变硅器件的发展,通过对新型应变器件结构及物理模型的深入分析和研究,有效改善了传统MOSFET器件因结构尺寸小的限制。同时,沟道掺杂工程在晶体器件中的广泛引入,使得新型应变SOIMOSFET器件得到了飞速的发展,在未来的社会发展中有着广泛的应用前景。  相似文献   

7.
GaN材料在光电子和微电子领域中得到广泛的应用,因此它是第三代半导体材料的典型代表。它具有宽的直接带隙、强的原子键、高的热导率、化学稳定性好(几乎不被任何酸腐蚀)等性质和强的抗辐照能力,在光电子、高温大功率器件和高频微波器件应用方面有着广阔的前景。在成像技术方面,GaN类的成像器件包括紫外摄像机和紫外数字照相机。  相似文献   

8.
ICP技术是微纳加工中的常用技术之一,由于在加工过程中的可控性较高,因此在MEMS的加工中有着越来越重要的地位。本文主要对硅基MEMS器件的刻蚀原理进行分析,并简要介绍在加工过程中如何对过程进行控制已达到想要的结果。  相似文献   

9.
采用了雷-丁平衡方程描述GaN/AlGaN中2DEG系统,总结GaN基异质结中2DEG的散射机制,主要的散射机制有电离杂质散射、压电散射及合金无序散射等。分析了各散射机制对2DEG输运的影响。  相似文献   

10.
高迁移率GaAs/AIGaAs二维电子气(2DEG)结构材料在基础物理研究和新型器件及电路的应用方面有十分重要的意义。低温电子迁移率μ超过10~6cm~2/V·s的2DEG材料可用于研究分数量子霍尔效应。高迁移率和高载流子面密度的2DEG材料可用于研制高电子迁移率晶体管(HEMT)、超高速数字集成电路(VHSIC)和微波毫米波单片集成电路(MIMIC)等超高频、超高速微电子器件和电路,它们被广泛应用在雷达、制导、电子对抗、光纤通讯和数字微波通讯等领域。  相似文献   

11.
Ⅲ族氮化物化合物半导体GaN是目前半导体领域的研究热点之一,具有宽禁带、高温下物理,化学性质稳定等特点,在光电子,微电子等领域有广泛的应用,降低缺陷密度制备高质量的GaN外延层是生产高性能和高寿命GaN器件的关键,也是人们始终致力于研究的内容,本讨论对近年来发展的一种采用选择性生长技术生长GaN的方法,原理,进展情况进行了介绍。  相似文献   

12.
随着分子束外延(MBE)、化学束外延(CBE)以及金属有机物化学汽相沉积(MOCVD)等超薄层生长技术的发展,人们已经成功地生长出原子级厚度和原子级平整的优质异质结构外延材料。以此为基础,研制成功多种新一代半导体光电子和微电子器件,如:量子阱激光器、高电子迁移率晶体管(HEMT)和异质结双极晶晶体管(HBT)等。这些器件不仅大大促进了国防电子工程技术的发展(如雷达、导弹),而且在超高速计算机、卫星通讯和电视接收等方面也有重要应用。超薄层外延材料具有许多新颖的物理特性,已成为凝聚态物理研究前沿领域之一。随着器件尺寸的减小,表面和界面效应越来越突出,并严重影响器件性能。因此,利用现代表面分析技术,从原子尺度上了解超薄层材料生长机理,及器件表面和界面的物理特性,有利于新型材料和器件的发展。三年来,我们在此领域做了许多深入研究,取得了一批具有较高学术价值和应用价值的研究成果。  相似文献   

13.
你知道现代战争是依赖什么布下天罗地网,获取地方信息并实行精确打击的吗?知道天气预报是靠什么探测气象信息吗?知道为什么飞机可以在漆黑的夜空安全飞行吗?对,就是因为雷达——奇特神秘的超视距眼睛。它自投入军旅以来,便用无形的手左右着战局,如今,已经成了影响现代战争的关键因素之一。而化合物半导体集成电路的出现顺应了现代雷达(毫米波雷达)的发展需求,尤其是磷化铟(InP)基和氮化镓(GaN)基器件与电路。  相似文献   

14.
为了深入研究功能材料和新型器件的性能,必须对材料的原子结构有系统的了解,同时发展先进的电子显微学方法。现代电子显微镜技术可以揭示材料和器件的多种重要结构现象,包括界面原子结构、结构相变和局域电子结构等。超导和多铁材料是目前材料科学及凝聚态物理研究热门课题,“电子显微技术及其在材料科学中的应用”项目重点关注了电子和几何铁电材料的微结构,深入分析了电荷序和铁电性,局域原子排布和拓扑畴的关联;系统研究了微观结构对新型铁基超导体物理性质的影响。项目获得基金委重大研究计划、国家自然科学基金面上项目、973国家重大科学研究计划支持,由中国科学院物理研究所主持完成,主要完成人有李建奇、杨槐馨、田焕芳、马超。  相似文献   

15.
<正>你知道现代战争是依赖什么布下天罗地网,获取地方信息并实行精确打击的吗?知道天气预报是靠什么探测气象信息吗?知道为什么飞机可以在漆黑的夜空安全飞行吗?对,就是因为雷达——奇特神秘的超视距眼睛。它自投入军旅以来,便用无形的手左右着战局,如今,已经成了影响现代战争的关键因素之一。而化合物半导体集成电路的出现顺应了现代雷达(毫米波雷达)的发展需求,尤其是磷化铟(InP)基和氮化镓(GaN)基器件与电路,成为了  相似文献   

16.
基于RT器件的数据选择器和D锁存器设计   总被引:1,自引:0,他引:1  
以共振隧穿二极管(resonant tunneling diode)和三端共振隧穿器件RTD/HEMT为基本单元,设计了一个全新的1-of-2数据选择器,并以该数据选择器为核心电路,实现了基于RT器件的D锁存器,SPICE仿真结果验证了设计的正确性,为利用RT器件设计时序电路提供了一个简单有效的设计方法.本文所设计的电路具有量子器件的低功耗、高速等优点.  相似文献   

17.
报道了一种新型含炔基查尔酮的合成方法,以邻溴苯甲醛和含取代基苯乙炔为原料,通过Sonogashira偶联反应,生成的炔基苯甲醛进一步与苯乙酮反应生成含炔基结构的查尔酮,此类查尔酮在过渡金属催化的串联反应研究领域有着重要的作用,该类化合物拓展了金、钯、铜等过渡金属参与催化的有机合成反应的底物范围,对进一步研究过渡金属参与的串联反应有一定的指导意义。该方法具有原料简单易得、反应过程操作容易、收率高等优点,产物经红外、核磁共振和质谱等分析手段确证结构。  相似文献   

18.
在南昌国际展览中心举办的博览会主馆入口处,一个长7.68米、宽3.84米的硅衬底LED全彩显示屏吸引了众多参观者的目光。这个显示屏就是由晶能光电(江西)有限公司制造的。晶能光电拥有的硅衬底GaN基LED材料与器件技术是一种改写半导体照明历史的颠覆性新技术,具有原创技术产权,而南昌大学“半导体照明技术”教育部创新团队正是这项技术的研发者。  相似文献   

19.
自GaN LED获诺贝尔奖以来,其热度呈现不断上涨之势,蓝光作为合成白色光源的最后一种基色光,使得其具有不可替代的重要性,若要将其应用于产业化,实现成品器件,则需要使其发光效率达到最大化,此时,石墨烯的作用就显得尤为重要,石墨烯作为诺贝尔奖的宠儿,具有超高的导电性、导热性以及透光性,这些性能使得其成为LED透明电极的理想材料。  相似文献   

20.
专家档案:成步文,研究员,博士生导师,中国科学院半导体研究所光电子研发中心副主任。目前主要从事Si基半导体异质结构材料的外延生长及相关光电子器件和光电集成技术的研究。在硅基异质结构材料外延设备、材料生长动力学、硅基光电子学器件等方面取得了重要研究成果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号