首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

2.
例1已知函数f(x)=ax3+bx2+(b-a)x,(a,b是不同时为零的常数),导函数f′(x),求证:函数y=f′(x)在(-1,0)内至少有一个零点.  相似文献   

3.
<正>例1(2010年高考全国卷I理科第20(2)题)已知函数f(x)=(x+1)lnx-x+1,证明:(x-1)f(x)≥0.证法1可得f′(x)=1x+lnx>0,(f′(x))′=x-1x2.进而可得f′(x)min=f′(1)=1>0,所以f(x)是增函数.当00;当x≥1时,得f(x)≥f(1)  相似文献   

4.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

5.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

6.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

7.
陈守礼 《教学月刊》2004,(11):54-55
一、对数求导法新编教材高中第三册 (选修 )中有对数函数的导数公式 :(lnx)′= 1x,(logax)′= 1xlogae,当函数 f(x)蕴含的运算关系复杂时 ,可用对数求导法求 f′(x).例1 f(x)= 3 (x+2)2(3x-2),求f′(x).解 :lnf(x)= 23ln(x+2) +13ln(3x-2) 1f(x)·f′(x)= 23· 1x+2+13· 33x-2= 9x+23(x+2)(3x-2) f′(x)= 3(x+2)2(3x-2)·9x+23(x+2)(3x-2)= 9x+23· 3 (x+2)(3x-2)2解法中的疑惑是 :两边取对数后 ,定义域发生了改变.如何理解 ?为了释疑 ,先解决函数y=loga|x|的求导问题.例2函数 y=loga|x| ,求 y′.解 :由例2,对数函数的导数公式可扩展为…  相似文献   

8.
1逆用导数运算法则构造例1(2011年广东佛山模考)设函数f(x),g(x)在R上的导函数分别为f′(x),g′(x),且满足f′(x)g(x)+f(x)g′(x)<0,则当af(b)g(x)(B)f(x)g(x)>f(b)g(b)(C)f(x)g(a)  相似文献   

9.
1 可导函数f(x)与其导函数f′(x)的对称性的有关结论 定理 设x0为函数f(x)定义域内的一点,n=f(x0)+f(2m-x0)2,则 (1)函数f(x)关于直线x=m对称的充要条件是f′(x)关于点(m,0)成中心对称;  相似文献   

10.
三次函数图象的对称性是高考的热点问题,任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”(-b/3a,f(-b/3a)),且“拐点”就是对称中心;对称中心在导函数y=f′(x)的对称轴上;若三次函数y=f(x)的两个极值点为x1,x2,设P(x1,f(x1)),Q(x2,f(x2)),则三次函数f(x)的对称中心是线段PQ的中点;通过引申更得出具有对称中心的单调函数的重要性质.这些性质在高考中广泛的应用.  相似文献   

11.
从近几年全国高考新课程试卷来看 ,利用导数的相关知识来分析和解决问题已成为高考命题的一个热点 .以下举例说明导数法的基本应用 .一、研究函数的单调区间【例 1】  ( 2 0 0 3年高考新课程卷 )设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .分析 :f′(x) =12x-1x+a(x >0 ) ,当a >0 ,x>0时 ,f′(x) >0 x2 + ( 2a-4 )x +a2 >0f′(x) <0 x2 + ( 2a -4 )x+a2 <0( 1 )当a >1时 ,对所有x>0都有f′(x)>0 ,此时f(x)在 ( 0 ,+∞ )上单调递增 .( 2 )当a =1时 ,对x≠ 1 ,有f′(x) >0 ,f(x)在 ( 0 ,1 )内单调递增 ,在 ( 1 ,+∞ )内…  相似文献   

12.
导数是高等数学的重要概念之一,它是研究可导函数的重要工具.在研究函数的单调性、极值、曲线的切线等方面都有它的一席之地.本文拟通过实例来剖析导数在初等数学中的一些应用.1 研究函数的单调性 利用导数研究函数的单调性,主要是根据下列结论:“设函数 y = f (x) 在某个区间内可导,若 f ′(x) > 0 ,则 f (x) 在此区间内为增函数;若 f ′(x) < 0 ,则 f (x) 在此区间内为减函数”.其一般步骤为:(1)求出导函数 f ′(x) ;(2)令 f ′(x) > 0 ,求出其解集,即为 f (x) 的单调递增区间;令 f ′(x) < 0 ,求出其解集,即 f (x) 的单调递减区间. …  相似文献   

13.
在导数的学习中 ,我们常常会遇到下面一些问题 :例 1 已知 f(x) =kx3-x2 + 13 kx-16在R上单调递增 ,则k的取值范围是 (   )(A)k >1     (B)k≥ 1(C)|k| >1(D)|k|≥ 1错解 f′(x) =3kx2 -2x+ 13 k ,依题设 ,对一切x ∈R ,f′(x) >0 .∴3k>0Δ =4-4 · 3k·13 k<0 ,∴k >1,选A .正解 依题设 ,对一切x∈R ,f′(x) ≥0 ,应选B .错因辨析 我们知道 ,对一切x∈R ,f′(x) >0是 f(x)在R上单调递增的充分不必要条件 .该题中 ,f(x)在R上单调递增的充要条件是对一切x∈R ,f′(x)≥ 0 .值得提醒的是 ,并不是对一切函数 f(x) ,f′(x)…  相似文献   

14.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

15.
1.三次函数的图象特征设f(x)=ax~3+bx~2+cx+d(a>0),(a<0的情形与a>0时相似),则其导函数为f′(x)=3ax~2+2bx+c.  相似文献   

16.
导数是高中数学新教材引入的新内容 ,它为函数的研究开辟了新途径 ,从而成为高考的新热点 .下面举例说明 ,希望能够引起重视 .【例 1】  ( 2 0 0 3年高考题 )设a>0 ,求函数 f(x) =x-ln(x+a) (x∈ ( 0 ,+∞ ) )的单调区间 .解析 :求导得 f′(x) =12x -1x +a(x >0 ) .据题设 ,a >0 ,x >0 ,于是f′(x) >0 x2 +( 2a -4 )x+a2 >0 ,f′(x) <0 x2 +( 2a-4 )x +a2 <0 .因二次三项式x2 +( 2a -4 )x+a2 的判别式Δ =( 2a -4 ) 2 -4a2 =16( 1-a) ,∴ ( 1)当a >1时 ,对所有x >0 ,有x2 +( 2a -4 )x+a2 >0 ,即 f′(x) >0 ,此时 f(x)在 ( 0 ,+∞ )内单调…  相似文献   

17.
本刊92年第五期刊登了一篇题为“周期函数与其导函数的周期”的文章,该文证明了下述定理。定理非常值周期函数f(x)在R上有定义且连续,而f′(x)存在且可积,则f′(x)也为周期函数,并且f(x)与f′(x)有相同的周期。并举下例说明其应用。例设f(x)=x-2k,(2k≤r<2k+1) -x+2(k+1),k∈2 (2k+1≤x<2k+2) 则f(x)与f′(x)有相同的周期2。(见原文例3)。显然,上例中的f′(x)当x=k时,不存在,故上述例不满足定理之条件,故用上述定理得出其结果不妥。易见,条件“f′(x)存在且可积”是相当强的,以致于象f(x)=tgx这样常用的初等函数  相似文献   

18.
2009年天津卷(文)第10题为:例1设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x~2,下面的不等式在R内恒成立的是().  相似文献   

19.
刘瑞美 《考试》2010,(Z1):115-118
一、与函数、导数和方程的交汇例1已知函数f(x)=(1/3)x~3+(1/2)ax~2+bx,a,b∈R,f′(x)是函数f(x)的导数。若-1≤a≤1,-1≤b≤1,求函数f′(x)在R上有零点的概率。分析:函数f′(x)在R上有零点即要求x~2+ax+b=0有实数根,只需根据一元二次方程有实数根的条件得出相应的不等关系,画出  相似文献   

20.
<正>函数零点问题一直是高考中的热点和难点,尤其是当其与导数结合起来时,解题方法更显得灵活多变,难度不容小觑,笔者认为,函数零点问题的基本解决思路及方法可归纳如下:首先研究函数f(x)单调性——自然要借助函数f(x)的导函数f′(x)(或f″(x))——这就需要知晓f′(x)的正负——往往要利用导函数f′(x)的零点——或隐零点——利用“隐零点”时则需借助“变形+构造”或“变形+放缩+构造”等方法来实现解题目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号