首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 赛题与"源" 赛题 (2005年全国高中数学联赛加试题第二题)设正数a,b,c,x,y,z满足cy+bz=a,az+cx=b,bx+ay=c,求函数f(x,y,z)=x2/(1+x)+y2/(1+y)+z2/(1+z)的最小值.  相似文献   

2.
有名辉老师在文[1]中对“一道第49届IMO赛题(第2题)的类比”后提出猜想: 设实数λ,x,y,z满足:-1<λ<1,λx,λy,λz都不等于-1,且xyz=1,则x2/(1+λx)2 +y2(1 +λy)2+z2/(1+λz)2≥3/(1+λ)2.(1)  相似文献   

3.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

4.
例1已知(x/(a-b))=(y/(b-c))=(z/(c-a)),求x+ y+z的值.解设(x/(a-b))-(y/(b-c))-(z/(c-a))=k,则x=k(a-b),y=k(b-c),z=k(c-a)于是x+y+z =k(a-b)+k(b-c)+k(c-a)=0,所以x+y+z=0.以上解法中,并没有具体求出x,y,z关于a,b,c的表达式.  相似文献   

5.
宿老师在文[1]最后提出了如下猜测:猜测设x,y,z∈R~+,当0<α≤log_23时,有(x/(2x+y+z))~α+(y/(x+2y+z))~α+  相似文献   

6.
本文给出不等式x/(1 x xy) y/(1 y yz) z/(1 z zx)≤1(其中x,y,z∈R_ )的一种最简单的证法。这种证法只需引用不等式(a b c)(1/a 1/b 1/c)≥9 (*)其中a,b,c∈R~ 。 令a=x/(1 x xy),b=y/(1 y yz),c=z/(1 z zx)易知 1/a 1/b 1/c=1/x 1 y 1/y 1 z 1/z 1 x=3 (x 1/x) (y 1/y) (z 1/z)≥3 2 2 2=9,当且仅当x=y  相似文献   

7.
2005年全国高中数学联赛加试题第二题如下:设正数 a、b、c、x、y、z 满足 cy+bz=a;az+cx=b;bx+ay=c,求函数 f(x,y,z)=x~2/(1+x)+y~2/(1+y)+z~2/(1+z)的最小值.本文运用构造法给出一个比较简捷的解法,供大家参考.根据条件不等式及待求分式结构,构造随机变量ξ的分布列如下:  相似文献   

8.
一类分式不等式的联想   总被引:3,自引:0,他引:3  
文[1]提出并证明如下分式不等式:问题1已知x、y、z为正实数,求证:x/(2x y z) y/(x 2y z) z/(x y 2z)≤3/4.其后,许多文章给出了该不等式的证明,如文[2]、文[3],笔者再给出一种简单的证法.  相似文献   

9.
1 (<数学通报>2009年1月号问题1772)设x、y、z ∈R+.试证: y+z/2x+z+x/2y+x+y/az≥2x/y+z+2y/z+x+2z/x+y (1) 今给出(1)式的一个加强推广,供参考.  相似文献   

10.
读贵刊1993。9期《利用条件变形求值》一文后,很受启发,作为续篇,下面介绍一种利用变形条件,采用代换常数巧妙求值的技巧: 例1 已知xyz=1,求如下式的值: 1/(1+x+xy)+1/(x+y+yx)+1/(1+z+zx) 解 将待求式小第一项之xy以(1′z)替代,第二项中y以1/(xz)替代, 原式=z/(1+z+zx)+xz/(1+z+zx)  相似文献   

11.
一个不等式的推广   总被引:2,自引:0,他引:2  
文 [1 ]中有如下一个不等式 :设 0 相似文献   

12.
孙毅 《中等数学》2003,(5):19-19
题目 已知x≥y≥z>0 .求证 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2 .这是第 3 1届IMO的一道预选题 ,原解答较繁 ,且技巧性强 ,这里给出一个相对简洁的证法 .证明 :由Cauchy不等式 ,有x2 yz +y2 zx +z2 xyx2 zy +y2 xz +z2 yx≥(x2 +y2 +z2 ) 2 .观察上式知 ,如有x2 yz +y2 zx +z2 xy ≥x2 zy +y2 xz +z2 yx ,则问题得证 .通分移项 ,有x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2 ≥0 .①故只须证式①成立 .x3 y2 -x2 y3 +y3 z2 -y2 z3 +x2 z3 -x3 z2=x2 y2 (x-y) +y2 z2 (y-z) +x2 z2 (z-x)=x2 y2 (x -y) +y2 z2 (y -z) +x2 z2 ·(z-y +y -x)…  相似文献   

13.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

14.
《数学通报》1580题:设△ABC的三边长分别是a,b,c,内切圆半径为r,求证:1/(a~2)+1/(b~2)+1/(c~2)≤1/(4r~2).(2005年第11期).原证:令a=y+z,b=z+x,c=x+y,并设s、△分别表示△ABC的半周长和面积,则易知x>0,y>0,x>0.并有s=1/2(a+b+c)=x+y+z,r=  相似文献   

15.
题目:设x+y+z=xyz,(x>0,y>0,z>0)求证:2(x2+y2+z2)-3(xy+yz+xz)+9≥0文[1]中用三角函数知识来证明,且证明繁琐,文[2]用换元的方法,然后利用第25届IMO试题的结论:若x≥0,y≥0,z≥0,且x+y+z=1,则xy+yz+xz-2xyz≤727来证明也是不简单,实际上利用拙文[3]中提出的证明不等式化齐次的策略可简单地给出证明.证明:因x+y+z=xyz,原不等式等价于2(x2+y2+z2)(x+y+z)-3(x+y+z)(xy+yz+xz)+9xyz≥02(x3+y3+z3)+2x(y2+z2)+2y(x2+z2)+2z(x2+y2)-3x(y2+z2)-3y(x2+z2)-3z(x2+y2)-9xyz+9xyz≥02(x3+y3+z3)-x(y2+z2)-y(x2+z2)-z(x2+y2)≥0(x+y)(x-y)2+(y+z)(y-z…  相似文献   

16.
如图1:T是锐角三角形,矩形R、S的一部分内接于T,设A(x)表示图形x的面积,求:A(R)+A(S)/A(T)的最大值。这是1987年上海市中学数学竞赛第二试第一题。本文将给出这个题目的解法及结论的推广。解:如图1,作锐角三角形T的高BD,设T的底边为a,矩形R、S的长、宽分别为b、x,c、y,顶端三角形的高为z。根据三角形相似得:b/a=(y+z)/(x+y+z),c/a=z(x+y+z)于是b=(y+z)/(x+y+z)a,c=z/(x+y+z)a故(A(R)+A(S))/A(T)=2(bx+cy)/a(x+y+z)  相似文献   

17.
问题:设x、y、z是正实数,且xyz=1,证明x3/(1 y)(1 z) y3/(1 x)(1 z) z3/(1 z)(1 y)≥3/4.(39届IMO预选题)  相似文献   

18.
2019年高考全国卷Ⅲ第23题(1):设x,y,z∈R,且x+y+z=1,求(x-1)^2+(y+1)^2+(z+1)^2的最小值.若以不等式方式呈现就是:设x,y,z∈R,且x+y+z=1,求证:(x-1)^2+(y+1)^2+(z+1)^2≥4/3.  相似文献   

19.
1 选择题( 1)设z =2xy3 ,则2y=(  )。 A 2 z y2        B 2 z x2 C 2 z x y  D 2 z y x( 2 )设z =2xy3 ,则z y x =2y =2 =(  )。 A 8 B 32 C 2 4 D 4 8( 3)函数z=ln( 4 -x2 - y2 )x2 +y2 - 1的定义域为(  )。 A x2 +y2 <4 B x2 +y2 >1 C 1相似文献   

20.
二次函数y =ax2 +bx +c(a≠ 0 )配方后可变为标准形式y =a(x + b2a) 2 + 4ac-b24a (a≠ 0 ) ,由此可以很快求出y的最值 ,初中数学中 ,有不少的最值问题 ,常常可以转化为二次函数来求解 ,下面通过几个例子来介绍几种求解方法。一、主元代入法例 1. 已知x、y、z均是实数 ,且满足x + 2y -z =6x -y + 2z =3求x2 +y2 +z2 的最小值。 (2 0 0 1年安庆市竞赛题 )解 :原方程组变为 :x + 2y =6 +zx -y =3- 2z,解得 x =4 -zy =z+ 1于是x2 +y2 +z2=(4-z) 2 + (z+ 1) 2 +z2=3z2 - 6z+ 17=3(z - 1) 2 + 14当z=1(此时x =3,y =2 )时 ,x2 +y2 +z2 取到最小值…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号