首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1?±?1.1?year (mean?±?SEM); BMI 27.0?±?0.4 kg·m2; VO2max 33.3?±?1.6 ml·kg?1·min?1) performed 45?min of two-leg dynamic knee extensor exercise at 19.5?±?0.9 W. Arterial and femoral venous blood samples from the CON and the IM legs were collected every 15?min during exercise, and thigh blood flow was measured with ultrasound Doppler. Arterial plasma IL-6 concentration increased with exercise (rest vs. 45?min, main effect p?p?p?=?.085, effect size 0.28) higher in the IM leg compared to the CON leg (288 (95% CI: 213–373) vs. 220 (95% CI: 152–299) pg·min?1, respectively). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p?>?.05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither immobilization nor exercise had an effect on TNF-α release across the working legs in older men.  相似文献   

2.
Abstract

In this study, we examined thermoregulatory responses to ingestion of separate aliquots of drinks at different temperatures during low-intensity exercise in conditions of moderate heat stress. Eight men cycled at 50% (s = 3) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.3°C, s = 0.5; relative humidity: 60%, s = 5). Four 400-ml aliquots of flavoured water at 10°C (cold), 37°C (warm) or 50°C (hot) were ingested after 30, 45, 60, and 75 min of exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. There were no differences between trials in rectal temperature at the end of the 90 min of exercise (cold: 38.11°C, s = 0.30; warm: 38.10°C, s = 0.33; hot: 38.21°C, s = 0.30; P = 0.765). Mean skin temperature between 30 and 90 min tended to be influenced by drink temperature (cold: 34.49°C, s = 0.64; warm: 34.53°C, s = 0.69; hot: 34.71°C, s = 0.48; P = 0.091). Mean heart rate from 30 to 90 min was higher in the hot trial (129 beats · min?1, s = 7; P < 0.05) than on the cold (124 beats · min?1, s = 9) and warm trials (126 beats · min?1, s = 8). Ratings of thermal sensation were higher on the hot trial than on the cold trial at 35 and 50 min (P < 0.05). Exercise capacity was similar between trials (P = 0.963). The heat load and debt induced by periodic drinking resulted in similar body temperatures during low-intensity exercise in conditions of moderate heat stress due to appropriate thermoregulatory reflexes.  相似文献   

3.
This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; = 0.01) and SPRAY (24.6 ± 3.3 min; = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (< 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; < 0.01) and throughout exercise, and reduced sweat rate (< 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.  相似文献   

4.
Sweat lactate reflects eccrine gland metabolism. However, the metabolic tendencies of eccrine glands in a hot versus thermoneutral environment are not well understood. Sixteen male volunteers completed a maximal cycling trial and two 60-min cycling trials [30°C?=?30±1°C and 18°C?=?18±1°C wet bulb globe temperature (WBGT)]. The participants were requested to maintain a cadence of 60 rev?·?min?1 with the intensity individualized at ~ 90% of the ventilatory threshold. Sweat samples at 10, 20, 30, 40, 50 and 60?min were analysed for lactate concentration. Sweat rate at 30°C (1380±325?ml?·?h?1) was significantly greater (P<0.05) than at 18°C (632±311?ml?·?h?1). Sweat lactate concentration was significantly greater (P<0.05) at each time point during the 18°C trial, with values between trials tending to converge across time. During the 30°C trial, both heart rate (20, 30, 40, 50 and 60?min) and rectal temperature (30, 40, 50 and 60?min) were significantly higher than in the 18°C trial. Higher sweat lactate concentrations coupled with lower sweat rates may indicate a greater relative contribution of oxygen-independent metabolism within eccrine glands during exercise at 18°C. Decreases in sweat lactate concentration across time suggest either greater dilution due to greater sweat volume or increased reliance on aerobic metabolism within eccrine glands. The convergence of lactate concentrations between trials may indicate that time-dependent modifications in sweat gland metabolism occur at different rates contingent partially on environmental conditions.  相似文献   

5.
Abstract

This study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; “higher-intensity” (140 min; HI140), “lower-intensity” (120 min; LI120) and “game-simulation” (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1°C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min?1) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h?1) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

6.
Abstract

Squash is a popular racket sport that requires intermittent activity with frequent bursts of near maximal-intensity exercise. Consequently, effective physiological and thermoregulatory responses are important contributors to performance during squash match-play. Controlled field-based simulation protocols have been introduced in a growing number of sports, which allow sports scientists to investigate changes in physiology and the efficacy of various interventions in sport-specific contexts. This study aimed to develop an exercise protocol that simulates the physiological requirements of elite squash match-play. Eight elite junior squash players (age 16.2 ± 0.8 years, height 1.76 ± 0.06 m, body mass 61.3 ± 5.9 kg; mean ± s) completed the following in a randomized order: (1) a squash match against a player of similar standard and (2) a squash-specific incremental exercise protocol (multistage squash test [MST]) followed by the squash simulation protocol (SSP). The multistage squash test was continued for 18.0 ± 1.0 min and elicited near maximal post-MST heart rates, blood lactate concentrations and ratings of perceived exertion (198 ± 9 beats · min?1, 5.7 ± 1.7 mmol · l?1 and 18 ± 1, respectively). The SSP was 12.2 min in length compared with mean game length during competitive matches of 10.0 ± 1.6 min (P = 0.27). Peak heart rates were similar during the SSP and match-play (192 ± 11 and 189 ± 6 beats · min?1, respectively; P = 0.44). Mean exercising heart rates were similar during the SSP (180 ± 8 beats · min?1) and match-play (179 ± 13 beats · min?1; P = 0.73). Peak blood lactate concentrations during the SSP and match-play were 3.5 ± 1.5 and 2.4 ± 1.2 mmol · l?1 (P = 0.07), respectively. Peak ratings of perceived exertion during the SSP and match-play were similar (17 ± 2 and 17 ± 2, respectively; P = 0.64). It was concluded that the SSP closely replicated the demands of squash match-play in elite junior squash players. Furthermore, the SSP provides coaches and scientific support staff with a controlled squash-specific exercise protocol that has potential application in the objective investigation of a range of interventions such as training programmes, nutritional supplements and strategies to maintain core body temperature.  相似文献   

7.
Abstract

Nine males cycled at 53% (s = 2) of their peak oxygen uptake ([Vdot]O2peak) for 90 min (dry bulb temperature: 25.4°C, s = 0.2; relative humidity: 61%, s = 3). One litre of flavoured water at 10 (cold), 37 (warm) or 50°C (hot) was ingested 30 – 40 min into exercise. Immediately after the 90 min of exercise, participants cycled at 95%[Vdot]O2peak to exhaustion to assess exercise capacity. Rectal and mean skin temperatures and heart rate were recorded. The gradient of rise in rectal temperature was influenced (P < 0.01) by drink temperature. Mean skin temperature was highest in the hot trial (cold trial: 34.2°C, s = 0.5; warm trial: 34.4°C, s = 0.5; hot trial: 34.7°C, s = 0.6; P < 0.01). Significant differences were observed in heart rate (cold trial: 132 beats · min?1, s = 13; warm trial: 134 beats · min?1, s = 12; hot trial: 139 beats · min?1, s = 13; P < 0.05). Exercise capacity was similar between trials (cold trial: 234 s, s = 69; warm trial: 214 s, s = 52; hot trial: 203 s, s = 53; P = 0.562). The heat load and debt induced via drinking resulted in appropriate thermoregulatory reflexes during exercise leading to an observed heat content difference of only 33 kJ instead of the predicted 167 kJ between the cold and hot trials. These results suggest that there may be a role for drink temperature in influencing thermoregulation during exercise.  相似文献   

8.
There is limited and inconclusive evidence surrounding the physiological and perceptual responses to heat stress while sleep deprived, especially for females. This study aimed to quantify the effect of 24 h sleep deprivation on physiological strain and perceptual markers of heat-related illness in females. Nine females completed two 30-min heat stress tests (HST) separated by 48 h in 39°C, 41% relative humidity at a metabolic heat production of 10 W · kg?1. The non-sleep deprived HST was followed by the sleep deprivation (SDHST) trial for all participants during the follicular phase of the menstrual cycle. Physiological and perceptual measures were recorded at 5 min intervals during the HSTs. On the cessation of the HSTs, heat illness symptom index (HISI) was completed. HISI scores increased after sleep deprivation by 28 ± 16 versus 20 ± 16 (P = 0.01). Peak (39.40 ± 0.35°C vs. 39.35 ± 0.33°C) and change in rectal temperature (1.91 ± 0.21 vs. 1.93 ± 0.34°C), and whole body sweat rate (1.08 ± 0.31 vs. 1.15 ± 0.36 L · h?1) did not differ (P > 0.05) between tests. No difference was observed in peak, nor rise in: heart rate, mean skin temperature, perceived exertion or thermal sensation during the HSTs. Twenty-four hours sleep deprivation increased perceptual symptoms associated with heat-related illness; however, no thermoregulatory alterations were observed.  相似文献   

9.
Abstract

We investigated cardiovascular fitness and haemodynamic responses to maximal cycle ergometer exercise test in children. The participants were a population sample of 425 children (204 girls, 221 boys) aged 6–8 years. Heart rate (HR) and systolic blood pressure (SBP) were measured from the beginning of pre-exercise rest to the end of recovery period. We provided reference values for peak workload and changes in HR and SBP during and after maximal exercise test in girls and boys. Girls had a lower cardiovascular fitness, indicated by peak workload per body weight [mean (2 s) 2.7 (0.9) vs. 3.1 (1.0) W · kg–1, P < 0.001] and lean mass [mean (2 s) 3.5 (0.9) vs. 3.8 (1.0) W· kg–1, P < 0.001] than boys. Plateau or decline in SBP close to the end of the test was found in about third of children and was considered a normal SBP response. Girls had a slower HR decrease within 2 min after the test than boys [mean (2 s) 53 (18) vs. 59 (22) beats · min–1, P < 0.001]. The results are useful for physicians and exercise physiologists to evaluate cardiovascular fitness and haemodynamic responses to exercise in children and to detect children with low exercise tolerance or abnormal haemodynamic responses to exercise.  相似文献   

10.
The thermoregulatory responses of upper-body trained athletes were examined at rest, during prolonged arm crank exercise and recovery in cool (21.5 ± 0.9°C, 43.9 ± 10.1% relative humidity; mean ± s) and warm (31.5 &± 0.6°C, 48.9 - 8.4% relative humidity) conditions. Aural temperature increased from rest by 0.7 ± 0.7°C (P ? 0.05) during exercise in cool conditions and by 1.6 ± 0.7°C during exercise in warm conditions (P ? 0.05). During exercise in cool conditions, calf skin temperature decreased (1.5 ± 1.3°C), whereas an increase was observed during exercise in warm conditions (3.0 ± 1.7°C). Lower-body skin temperatures tended to increase by greater amounts than upper-body skin temperatures during exercise in warm conditions. No differences were observed in blood lactate, heart rate or respiratory exchange ratio responses between conditions. Perceived exertion at 45 min of exercise was greater than that reported at 5 min of exercise during the cool trial (P ? 0.05), whereas during exercise in the warm trial the rating of perceived exertion increased from initial values by 30 min (P ? 0.05). Heat storage, body mass losses and fluid consumption were greater during exercise in warm conditions (7.06 ± 2.25 J·g-1 ·°C-1, 1.3 ± 0.5 kg and 1038 ± 356 ml, respectively) than in cool conditions (1.35 ± 0.23 J·g-1·°C-1, 0.8 ± 0.2 kg and 530 ± 284 ml, respectively; P ? 0.05). The results of this study indicate that the increasing thermal strain with constant thermal stress in warm conditions is due to heat storage within the lower body. These results may aid in understanding thermoregulatory control mechanisms of populations with a thermoregulatory dysfunction, such as those with spinal cord injuries.  相似文献   

11.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

12.
There is a paucity of studies that have evaluated substrate utilisation and protein catabolism during multiday strenuous exercise in athletes. Eleven well-trained male cyclists completed 3 h of race-simulated cycling on 4 consecutive days. Cyclist exercised 2 h postprandially and with carbohydrate supplementation (~50 g · h?1) during exercise. Whole body substrate utilisation was measured by indirect calorimetry, protein catabolism from sweat and urine urea excretion, and blood metabolite concentration was evaluated. Protein catabolism during exercise was significantly greater on days 2–4 (29.9 ± 8.8; 34.0 ± 11.2; 32.0 ± 7.3 g for days 2, 3, and 4, respectively) compared to day 1 (23.3 ± 7.6 g), < 0.05. Fat oxidation was greater at 21 km (~45 min) on days 2–4 (1.06 ± 0.23; 1.08 ± 0.25; 1.12 ± 0.29 g · min?1) compared to day 1 (0.74 ± 0.23 g · min?1, < 0.05), but the rate of carbohydrate and fat oxidation was similar between days at 50 and 80 km. Whole body substrate utilisation is altered on subsequent days of multiday prolonged strenuous cycling that includes a quicker transition to greater fat utilisation from exercise onset and a 28–46% greater reliance on endogenous protein catabolism on all successive days.  相似文献   

13.
Abstract

The aim of this study was to compare the physiological and psychological responses of cyclists riding on a hard tail bicycle and on a full suspension bicycle. Twenty males participated in two series of tests. A test rig held the front axle of the bicycle steady while the rear wheel rotated against a heavy roller with bumps (or no bumps) on its surface. In the first series of tests, eight participants (age 19 – 27 years, body mass 65 – 82 kg) were tested on both the full suspension and hard tail bicycles with and without bumps fitted to the roller. The second series of test repeated the bump tests with a further six participants (age 22 – 31 years, body mass 74 – 94 kg) and also involved an investigation of familiarization effects with the final six participants (age 21 – 30 years, body mass 64 – 80 kg). Heart rate, oxygen consumption ([Vdot]O2), rating of perceived exertion (RPE) and comfort were recorded during 10 min sub-maximal tests. Combined data for the bumps tests show that the full suspension bicycle was significantly different (P < 0.001) from the hard tail bicycle on all four measures. Oxygen consumption, heart rate and RPE were lower on average by 8.7 (s = 3.6) ml · kg?1 · min?1, 32.1 (s = 12.1) beats · min?1 and 2.6 (s = 2.0) units, respectively. Comfort scores were higher (better) on average by 1.9 (s = 0.8) units. For the no bumps tests, the only statistically significant difference (P = 0.008) was in [Vdot]O2, which was lower for the hard tail bicycle by 2.2 (s = 1.7) ml · kg?1 · min?1. The results indicate that the full suspension bicycle provides a physiological and psychological advantage over the hard tail bicycle during simulated sub-maximal exercise on bumps.  相似文献   

14.
Abstract

Studies have reported the benefits of pre-cooling prior to exercise in the heat for male athletes, but at this time no research has investigated female athletes. The aim of the following study was to test the effects of pre-cooling on female repeat sprint performance in hot, humid conditions; namely is ice ingestion effective in reducing core temperature (Tc) and does this reduced Tc lead to improved repeat sprint performance in female athletes? Nine female team sport athletes with mean age (21.0 ± 1.2 y), height (169.8 ± 4.1 cm) and body mass (62.3 ± 5.0 kg) participated in this study. Participants completed 72 min of an intermittent sprint protocol (ISP) consisting of 2 × 36 min halves in hot, humid conditions (33.1 ± 0.1°C, 60.3 ± 1.5% RH) on a cycle ergometer. This was preceded by 30 min of either ice ingestion (ICE) or water consumption (CON) in a randomised order. At the end of the pre-cooling period, Tc significantly decreased following ICE (?0.7 ± 0.3°C) compared to CON (?0.1 ± 0.2°C; p = 0.001). Tc also remained lower in ICE compared to CON during the ISP (p = 0.001). Ratings of perceived thermal sensation were lower in ICE compared to CON (p = 0.032) at the beginning (p = 0.022) and mid-point (p = 0.035) of the second half. No differences in work, mean power, peak power, rating of perceived exertion, heart rate or sweat loss between conditions were recorded (p > 0.05). Ice ingestion significantly reduced female Tc prior to intermittent exercise in the heat and reduced thermal sensation; however, this did not coincide with improved performance.  相似文献   

15.
Purpose: This study investigated the physiological effects of wearing a mouthguard during submaximal treadmill exercise. Method: Twenty-four recreationally active males (Mage = 21.3 ± 2.4 years, Mheight = 1.78 ± 0.06 m, Mweight = 81.9 ± 10.6 kg, Mbody mass index = 25.8 ± 3.4 kg·m?2) performed incremental, continuous exercise at 2, 4, 6, and 8 mph (3.2, 6.4, 9.7, 12.9 kph) for 5 min at each speed on a motor-driven treadmill on 2 separate occasions in a randomized, crossover, counterbalanced design while wearing or not wearing a self-adaptable “boil and bite” mouthguard. Respiratory rate (RR), tidal volume (VT), ventilation (VE), oxygen consumption (VO2), respiratory exchange ratio (RER), and heart rate (HR) data were averaged during the last 60 s of each exercise stage; blood lactate (LA) was measured before exercise and 3 min and 10 min following exercise. Results: Repeated-measures analysis of variance revealed that mouthguard use failed to alter the response of RR, VT, VE, VO2, RER, and HR to treadmill exercise (p > .05), although each variable did increase in magnitude as a result of increasing treadmill speed (p < .001). Although increasing to above resting values at both 3 min and 10 min (p < .001) after cessation of exercise, LA levels also displayed no differences with mouthguard use (p > .05). Conclusion: Despite predictable increases in respiratory, metabolic, and cardiovascular variables in response to incremental exercise, the presence of a mouthguard failed to affect the magnitude or nature of these physiological responses.  相似文献   

16.
Abstract

In this study, we examined the effects of different work:rest durations during 20 min intermittent treadmill running and subsequent performance. Nine males (mean age 25.8 years, s = 6.8; body mass 73.9 kg, s = 8.8; stature 1.75 m, s = 0.05; [Vdot]O2max 55.5 ml · kg?1 · min?1, s = 5.8) undertook repeated sprints at 120% of the speed at which [Vdot]O2max was attained interspersed with passive recovery. The work:rest ratio was constant (1:1.5) with trials involving either short (6:9 s) or long (24:36 s) work:rest exercise protocols (total exercise time 8 min). Each trial was followed by a performance run to volitional exhaustion at the same running speed. Testing order was randomized and counterbalanced. Heart rate, oxygen consumption, respiratory exchange ratio, and blood glucose were similar between trials (P > 0.05). Blood lactate concentration was greater during the long than the short exercise protocol (P < 0.05), whereas blood pH was lower during the long than the short exercise protocol (7.28, s = 0.11 and 7.30, s = 0.03 at 20 min, respectively; P < 0.05). Perceptions of effort were greater throughout exercise for the long than the short exercise protocol (16.6, s = 1.4 and 15.1, s = 1.6 at 20 min, respectively; P < 0.05) and correlated with blood lactate (r = 0.43) and bicarbonate concentrations (r = ?0.59; P < 0.05). Although blood lactate concentration at 20 min was related to performance time (r = ?0.56; P < 0.05), no differences were observed between trials for time to exhaustion (short exercise protocol: 95.8 s, s = 30.0; long exercise protocol: 92.0 s, s = 37.1) or physiological responses at exhaustion (P > 0.05). Our results demonstrate that 20 min of intermittent exercise involving a long work:rest duration elicits greater metabolic and perceptual strain than intermittent exercise undertaken with a short work:rest duration but does not affect subsequent run time to exhaustion.  相似文献   

17.
Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V?O2peak) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (< 0.001), with no difference between conditions (> 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng?mL?1, < 0.01 vs. 0.04 ± 0.18 ng?mL?1, = 0.77). Immediately following exercise, Tcore was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (< 0.01), with no difference between conditions (= 0.16). The rise in mean Tskin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J?g?1, respectively) was higher during INT (< 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the Tcore elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.  相似文献   

18.
VO2 fluctuations are argued to be an important mechanism underpinning chronic adaptations following interval training. We compared the effect of exercise modality, continuous vs. intermittent realized at a same intensity, on electrical muscular activity, muscular oxygenation and on whole body oxygen uptake. Twelve participants (24?±?5 years; VO2peak: 43?±?6?mL·?min?1·kg?1) performed (i) an incremental test to exhaustion to determine peak work rate (WRpeak); two randomized isocaloric exercises at 70%WRpeak; (ii) 1 bout of 30 min; (iii) 30 bouts of 1?min work intercepted with 1?min passive recovery. For electromyography, only the CON exercise showed change for the vastus lateralis root-mean-square (+6.4?±?5.1%, P?P?vs. 2.32?±?1.21?mM, respectively, for the CON and INT, P?vs. 356?±?301?sec, respectively, for the CON and INT, P?相似文献   

19.
Abstract

This study examined the effects of caffeine, co-ingested with a high fat meal, on perceptual and metabolic responses during incremental (Experiment 1) and endurance (Experiment 2) exercise performance. Trained participants performed three constant-load cycling tests at approximately 73% of maximal oxygen uptake ([Vdot]O2max) for 30 min at 20°C (Experiment 1, n = 8) and to the limit of tolerance at 10°C (Experiment 2, n = 10). The 30 min constant-load exercise in Experiment 1 was followed by incremental exercise (15 W · min?1) to fatigue. Four hours before the first test, the participants consumed a 90% carbohydrate meal (control trial); in the remaining two tests, the participants consumed a 90% fat meal with (fat + caffeine trial) and without (fat-only trial) caffeine. Caffeine and placebo were randomly assigned and ingested 1 h before exercise. In both experiments, ratings of perceived leg exertion were significantly lower during the fat + caffeine than fat-only trial (Experiment 1: P < 0.001; Experiment 2: P < 0.01). Ratings of perceived breathlessness were significantly lower in Experiment 1 (P < 0.01) and heart rate higher in Experiment 2 (P < 0.001) on the fat + caffeine than fat-only trial. In the two experiments, oxygen uptake, ventilation, blood [glucose], [lactate] and plasma [glycerol] were significantly higher on the fat + caffeine than fat-only trial. In Experiment 2, plasma [free fatty acids], blood [pyruvate] and the [lactate]:[pyruvate] ratio were significantly higher on the fat + caffeine than fat-only trial. Time to exhaustion during incremental exercise (Experiment 1: control: 4.9, s = 1.8 min; fat-only: 5.0, s = 2.2 min; fat + caffeine: 5.0, s = 2.2 min; P > 0.05) and constant-load exercise (Experiment 2: control: 116 (88 – 145) min; fat-only: 122 (96 – 144) min; fat + caffeine: 127 (107 – 176) min; P > 0.05) was not different between the fat-only and fat + caffeine trials. In conclusion, while a number of metabolic responses were increased during exercise after caffeine ingestion, perception of effort was reduced and this may be attributed to the direct stimulatory effect of caffeine on the central nervous system. However, this caffeine-induced reduction in effort perception did not improve exercise performance.  相似文献   

20.
Abstract

In this study, we examine the effect of exercise on the time and flow characteristics of the respiratory cycle profile at the point of volitional exercise termination. Eight males (mean age 29 years, s = 10; body mass 74 kg, s = 7; height 1.75 m, s = 0.04) undertook a cycle test to volitional exhaustion on a cycle ergometer, which allowed peak oxygen uptake ([Vdot]O2peak) to be measured (mean 51 ml · kg?1 · min?1, s = 7). At a later date, two sub-maximal tests to volitional exhaustion were completed in a random order at 76% (s = 6) and 86%[Vdot]O2peak (s = 7). As expected, the magnitude of the respiratory flow and time characteristics varied with the three exercise intensities, as did the point of exercise termination and terminal ventilation rates, which varied from 7 to 27 min and 112 to 132 litres · min?1 respectively. More importantly, however, at exercise termination some of the characteristics were similar, particularly the breathing frequency (at termination 49 breaths · min?1), the ratio between inspiration and total breath time (0.5), and the later occurrence of peak inspiratory flow (0.24 – 0.48 s). The coincident unity of these time and flow profile characteristics at exercise termination illustrates how the integration of timing and flow during breathing influence exercise capacity in non-elite athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号