首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
例1 x为实数,求x~4+4x+4的最小值.解原式=(x~4-2x~2+1)+(2x~2+4x+2)+1 =(x~2-1)~2+2(x+1)~2+1.因为(x~2-1)~2≥0,(x+1)~2≥0,  相似文献   

2.
一、中央大学高考题题对于 x 的一切实数值,不等式((x~2+1)cosθ-x(cosθ-5)+3)/(x~2-x+1)>sinθ-1成立。求θ值的范围.解∵((x~2+1)cosθ-x(cosθ-5)+3)/(x~2-x+1)=((x~2-x+1)cosθ+5x+3)/(x~2-x+1)  相似文献   

3.
例1 解方程 arcsec|(x~2+1)/(x~2-1)|+arc csc|(x~2+1)/2x| +arcctg|(x~2-1)/2x|=π解:∵ |2x|~2+|x~2-1|~2=(x~2+1)~2 构造Rt△ABC(图1) 令a=arc csc|(x~2+1)/2x|,则 arcsec|(x~2+1)/(x~2-1)|=a, arcsec|(x~2+1)/(x~2-1)|=a, arcctg|(x~2-)/2x|=a, a+a+a=π,  相似文献   

4.
构造“零值”代数式,解一类条件代数式求值问题,整体意识强,简捷明快、现举例说明.例1 已知x=2-5~(1/5),那么x~4-8x~3+16x~2-x+1的值是(?).(第六届“希望杯”初二数学竞赛题)解∵x=2-5~(1/5),∴2-x=5~(1/5).两边平方,整理得x~2-4x-1=0.∴x~4-8x~3+16x~2-x+1=x~2(x~2-4x-1)-4x(x~2-4x-1)+(x~2-4x-1)-x+2=-x+2=5~(1/5)  相似文献   

5.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

6.
所谓“赋值法”,是指对式中某些变量任意赋以恰当的数值或代数式后,用以解题的一种方法。这种方法在教材中已经出现。例如C_n~0+C_n~1+C_n~2+…C_n~n=2~n的性质,就是从(a+b)~n的展开式中令a=1 b=1得来。本文准备再补充几个例子,作一些粗浅的探讨。 (一) 用于因式分解例1.分解因式x~4+x~3+x~2+2 解:设x~4+x~3+x~2+2≡(x~2+Ax+1)(x~2+Bx+2) 令x=i,整理得2-i=-AB+Ai  相似文献   

7.
以下一些多项式x~4+x~3+x~2+x+1;x~6+x~5+x~4+x~3+x~2+x+1;x~4-x~3+x~2-x+1;x~6-x~5+x~4-x~3+x~2-x+1;x~8+x~6+x~4+x~2+1等在实数范围内的因式分解间题如何处理。本文借助于复数的开方知识来解决这个问题,同时,得到了一些三角式的值。  相似文献   

8.
本文介绍求函数f(x)的表达式的几种方法,目的在于使学生深刻理解函数的定义,熟练掌握解题时常用的数学方法,以发展学生的思维能力。例1.(变量代换)已知二次函数f(x),满足f((1+x)/x)=(x~2+1)/x~2+1/x,求f(x)的表达式解f((1+x)/x)=(x~2+1)/x~2+1/x=1+1/x~2+1/x,  相似文献   

9.
“十字相乘法”是初中教材中应用较广的内容,但一般学生往往习惯于直接的应用,其实稍加变化,可应用得更灵活,并可从中培养学生灵活解题的能力,现举例说明如何更广泛地应用“十字相乘法”。例1 解方程2x~2+3x-5(2x~2+3x+9)~(1/2)+3=0。解:原方程可化为2x~2+3x+9-5(2x~2+3x+9)~(1/2)-6=0,如果我们以(2x~2+3x+9)~(1/2)作为一个变量X,则方程便是X~2-5X-6=0,用十字相乘法,得((2x~2+3x+9)~(1/2)-6)((2x~9+3x+9)~(1/2)+1)=0由(2x~2+3x+9)~(1/2)=6,解得x_1=-9/2,x_2=3。而(2x~2+3x+9)~(1/2)=-1,无解。经检  相似文献   

10.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

11.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

12.
在中学代数的方程部分,有可以利用辅助未知数解的分式方程和无理方程,比如 (x~2-x+1)/(x~2+x+3)+6·(x~2+x+3)/(x~2-x+1)-5=0;(1)下面说明这两类方程有没有增根的问题。方程(1)类型的分式的一般形式为  相似文献   

13.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

14.
在初中数学竞赛中,常出现一类代数式求值问题,如: (1) 已知x=2-3~(1/2),求x~4-5x~3+6x~2+5x的值。(1986年上海市初中数学竞赛试题) (2) 若x=(5~(1/2)-1)/2,则x~4+x~2+2x-1=____。(第六届全国部分省市初中数学通讯赛试题) (3) 已知x=(111~(1/2)-1)/2,求多项式(2x~5+2x~4-53x~3-57x+54)~(1989)值。(1989年浙江省初中二年级数学竞赛试题) (4) 已知a=(22~(1/2)+5~(1/2))/(5~(1/2)-2~(1/2))求值:a~5-7a~4+6a~3-7a~2+11a+13。(第三届求是杯数学竞赛初二试题) (5) 当x=3~(1/2)-1时,代数式 (x+4)/(x~3+6x~2+5x-3~(1/2)-15)的值是多少?(88—89学年度广州、福州、武  相似文献   

15.
等比数列前n项的求和公式的推论: (a-b)(a~(n-1)+a~(n-2b)+…+b~(n-1))=a~n-b~n以及它的特殊形式: (1-q)(1+q+q~2+…+q~(n-1))=1-q~n都是因式分解的重要公式,而因式分解则是解题(如求值,证明等)的重要手段,以下各例,可以说明。例1 分解因式X~(12)+x~9+x~6+x~3+1(1978年全国数学竞赛决赛题) =(x~4+x~3+x~2+x+1) (x~8-x~7+x~5-x~4+x~3-x+1) 例2 已知ω=e~((2π/5)i),求1+ω~4+ω~8+ω~(12)+ω~(16)之值。解原式=((1-ω~4)(1+ω~4+ω~8+ω~(12)+ω~(16))/1-ω~4 =(1-ω~(20))/(1-ω~4)=(1-(ω~5)~4)/(1-ω~4) ∵ω~5=(e~((2π/5)i))~5=e~(2πi)=1 ω~4=e~((8/5)πi)≠1 ∴原式=0 例3 求能使2~n-1被7整除的所有正整数n。(第六届国际数学竞赛题) 解分二种情况讨论。 (1)如果n是3的倍数,我们设n=3k(k为正整数),这时  相似文献   

16.
三角法解几何题是较为常见的,三角法解代数题则较为少见。下面略举不同类型代数题的三角解法,其目的在于揭示三角代换法常用时机,常用范围及使用技巧。〈一〉分解因式例1.已知x~2-y~2-z~2=0试将x~3-y~3-z~3分解因式解:由已知得:y~2+z~2=x~2令y=xsinθz=xcosθ则 x~3-y~3-z~3=x~3(1-sin~3θ-cos~3θ) =x~3(sin~2θ-sin~3θ+cos~2θ-cos~3θ) =x~3[sin~2θ(1-sinθ)+cos~2θ(1-cosθ)] =x~3[(1-cos~2θ)(1-sinθ)-(1-sin~2θ)(1-cosθ)] =x~3(1-sinθ)(1-cosθ)(1+cosθ+1+sinθ) =(x-xsinθ)(x-xcosθ)(2x+xcosθ+xsinθ)  相似文献   

17.
倒数方程是一种特殊的高次方程,它有四种基本类型,每种类型都有常规的解法。本文就从四个方面对这个问题作以综述。一、第一类型的偶次倒数方程的解法例1、解方程x~4+7x~3+14x~2+7x+1=0解:显然x=0不是方程的根,两边同除以x~2,得(x~2+(1/x~2))+7(x+(1/x))+14=0令x+(1/x)=y,测x~2+(1/x~2)=y~2-2测有y~2+7y+12=0(y+3)(y+4)=0∴y=3或y=4当x+(1/x)=-3时,x~2+3x+1=0  相似文献   

18.
题目:当p_1p_2=2(q_1+q_2)时.试证方程x~2+p_1x+q_1=0与x~2+p_2x+q_2=0中,至少一个有实根.(1984,吉林省初中竞赛) 推广当时,方程x~2+p_1x+q_1=0中至少  相似文献   

19.
例2. 求下列极限:(1)(?)e~x~2+x~2-1/x~4 (2)(?)x+sinx/x-cosx解:(1)易判定这是“0/0”型未定式极限,若用初等方法求解是比较困难的.用洛必达法则,有原式=(?)(e~n~2+x~2-1)~(?)/x~4=(?)2xe~x~2-2x~(0/0)/4x~3  相似文献   

20.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号