首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 734 毫秒
1.
钙调神经磷酸酶信号转导途径与运动性心肌肥大研究进展   总被引:3,自引:0,他引:3  
任绮  邓树勋 《体育科学》2006,26(8):53-58
心脏通过重塑结构和体积应对生理和病理等刺激所造成的不同生理负荷的需求,长期运动训练能促进发生心肌生理性肥大反应但机制仍未阐明。钙离子/钙调素依赖的钙调神经磷酸酶信号转导途径参与心肌肥大反应过程。综述近年来关于钙调神经磷酸酶依赖的信号通路参与心肌肥大调节的分子信号机制,探讨阻止心肌病理生理性肥大的信号传递机制,以期预防运动性心血管疾病的发生。  相似文献   

2.
丝裂素活化蛋白激酶家族是多条信号转导途径中的关键物质。为进一步促进运动员心脏形成机理的研究,加深在细胞和分子生物学水平对运动性心肌肥大的认识,通过文献检索方法,综述丝裂素活化蛋白激酶在运动性心肌肥大信号转导中所起的作用。研究显示:运动性心肌肥大是运动特殊环境刺激下,心脏发生的生理性反应;由刺激到心脏表型的变化,依赖于一系列复杂的细胞内信号转导过程;丝裂素活化蛋白激酶是许多信号通路的汇聚点,其在运动性心肌肥大中也起了重要的信号介导作用。  相似文献   

3.
近百年来,诸学者对运动性心肌肥大的机制做了大量的研究工作,运动性心肌肥大是心肌细胞对运动诱发的各种刺激如神经体液、心脏内分泌、Ca^2 的调节及运动引起心肌细胞的基因表达的适应性变化,根据文献报道,本文拟对运动性心肌肥大的生物学机制做一综述。  相似文献   

4.
运动性心肌肥大的细胞信号转导与基因表达   总被引:1,自引:0,他引:1  
运动引起心肌肥大的产生及发展机制已有近百年的研究历史,并且一直是备受运动医学界关注的热点课题。国内外已有许多专家学者已就心肌肥大的刺激因素,如机械因素、血流动力学因素、神经内分泌因素、遗传因素等进行了较深入的研究。仅从运动性心肌肥大的生物学机制方面,就诱导其发生的刺激因素及其信号转导通路、基因表达等几个方面加以综述。  相似文献   

5.
运动性心肌肥大的生物学机制研究(综述)   总被引:1,自引:0,他引:1  
运动性心肌肥大是运动训练中的普遍生理现象,表现为心脏增大、心肌肥厚、心室壁增厚、心脏重量增加等特征。目前,对运动性心肌肥大属于调节性、生理性肥大的认识渐趋一致,但其发生机制尚未完全阐明。本文从内分泌、机械刺激和基因表达等几个方面对运动性心肌肥大的生物学机理作一综述。  相似文献   

6.
运动性心肌肥大是运动训练中的普遍生理现象,表现为心脏增大、心肌肥厚、心室壁增后增厚、心脏重量增加等特征。目前对运动性心肌肥大属于调节性、生理性肥大的认识渐趣一致,但其发生机制尚未完全阐明。本文从内分泌、机械刺激和基因表达等几个方面对运动性心肌肥大的生物学机理作一综述。  相似文献   

7.
张钧 《体育科研》2021,42(1):62-68
心脏肥大是心脏受到生理或病理刺激而引起细胞和分子层面发生一系列变化的结果,运动性心肌肥大是心脏对长期运动产生的适应性变化。随着分子生物学相关研究的深入,运动性心肌肥大的形成不再认为仅仅是血流动力负荷所引起的细胞体积、结构和功能的改变。近年来的研究发现,miRNA和自噬被认为是调控运动性心肌肥大形成的重要因素。基于此,本文以心肌细胞自噬和miRNA为切入点,综述近年来运动诱导的心肌生理性肥大过程中自噬与miRNA发挥作用的机制,为进一步阐明运动性心肌肥大的机制提供依据。  相似文献   

8.
运动训练能引起心肌发生生理性肥大反应,表现为心室腔扩张和室壁肥厚.失代偿性心肌肥大可能会诱发病理性的转变.大量致力于心肌生理性和病理性肥大信号转导通路机制的研究表明,蛋白激酶C信号转导途径参与了心肌肥大反应、缺血预处理保护作用和细胞凋亡等生理病理过程.通过综述蛋白激酶C参与心肌肥大心肌机制的研究进展,探讨延缓运动引起心血管疾病的信号传递机制.  相似文献   

9.
运动性心肌肥大是心肌细胞对运动诱发的各种刺激因素如机械负荷、体液因子以及由这些因素导致的心肌收缩蛋白基因表达改变的功能反应。它除了表现为细胞形态及功能改变外,基因表达变化是其本质特征,而细胞的信号传导则是将胞外刺激转变为核内反应的重要连接。心肌细胞本身的结构或功能改变与心肌间质组织尤其是心肌胶原有密切关系。目前,心肌肥大的信号传导通路及细胞外基质的作用已有深入的研究并取得重要进展.但在运动性心肌肥大发生中的机制仍了解有限,本文就运动性心肌肥大的研究进展及展望进行了综述。  相似文献   

10.
运动性心肌肥大的机理研究(综述)   总被引:2,自引:0,他引:2  
许玲  邓树勋 《体育科技》2001,22(1):37-41
运动性心肌肥大是运动训练中普遍出现的生理现象,其表现为心脏增大,心肌肥厚,心室壁增厚,心脏重量增加等现象.目前,对运动性心肌肥大属调节性、生理性肥大的认识渐趋一致,但其发生机制尚末完全阐明.根据文献报导,从血流动力学因素、神经内分泌因素(如儿茶酚胺、血管紧张素Ⅱ)、致心肌肥大因子、遗传因素等对心肌肥大机理作一综述.  相似文献   

11.
彭峰林  邓树勋 《体育科学》2005,25(10):71-74
整合素是介导机械刺激的细胞表面粘附分子,对心肌肥大有介导作用。综述有关整舍素的分子生物学基础及其转导的信号途径,进一步探讨其在运动心肌肥大中的可能机制。  相似文献   

12.
柳华  杨翼 《湖北体育科技》2011,30(6):676-680
心肌肥厚是心脏受到刺激后的一种代偿反应。心肌的生理性肥厚可提高心脏机能,但病理性肥厚则会引起心血管疾病心律失常发病和死亡,亦是运动员发生猝死的原因之一。明确运动性心肌肥厚的机制,可为保护运动员心脏提供理论依据。目前为止,形成心肌肥厚的信号通路包括PKC、蛋白激酶B(Akt)、钙调神经磷酸酶(CaM)、丝裂原活化蛋白激酶...  相似文献   

13.
运动心脏重塑的发生与转归   总被引:5,自引:0,他引:5  
为了进一步探讨运动心脏结构与功能的发生、转归及其与病理心脏的本质差异,作者通过动物实验模拟运动心脏,观察了经过12周耐力训练及完全停止运动训练8周后心脏重量和超微结构的变化,并应用激光扫描共聚焦显微镜与新一代钙荧光指示剂Fluo—3/AM负载方法对心肌活细胞内具有生物活性的游离钙的动态变化进行了研究。结果表明,运动心脏超微结构和胞内钙产生了良好的适应性改变,心肌收缩时收缩结构钙可获得量增多,构成运动心脏心肌收缩性、氧化代谢及自分泌功能增强的重要细胞机制。完全停训后,运动心肌细胞内游离钙,心房特殊囊粒,心肌线粒体及毛细血管结构适应性改变的消退证实运动心脏结构与功能改变具有可恢复性,区别于病理心脏。  相似文献   

14.
BackgroundPromoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth.MethodsAdult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy.ResultsSwimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1–positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)–rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation.ConclusionOur findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号