首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

2.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

3.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

4.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

5.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

6.
在平面几何中,许多百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,但对于初一、初二的几何初学者来说,添加辅助线都是解题的难点.本文介绍初一、初二阶段几种常见的辅助线,供参考.1 连结两个已知点 例1 如图,己知AB=CD,AC=BD.求证:∠A=∠D. 证明连结BC,在∠ABC与∠DBC中, BC=CB(公共边) AB=DC(已知) AC=DB(已知) ∴△ABC≌△DCB (SSS) ∴∠A=∠D(全等三角形  相似文献   

7.
三角形全等是初中几何的一个重点内容 ,同时也是一个难点 ,特别是当三角形出现重合部分时 ,更难找出对应角和对应边。现介绍一种方法———分离图形法 ,即把所需证明全等的两个三角形从原图形中平移出来。例 1 求证 :等腰三角形两腰上的高相等。已知 :如图 1 ,在△ABC中 ,AB =AC ,BD⊥AC ,CE⊥AB ,垂足分别是D、E 求证 :BD =CE 分析 :BD和CE可分别看成△ABD和△ACE的两条边 ,便可把BD和CE所在三角形分离出来 ,如图 1所示 ,更易找出这两个三角形的相等的边和角。图 1证明 :∵BD⊥AC ,CE⊥AB∴∠ADB =∠AEC =90°在△AB…  相似文献   

8.
1.证明线段成比例 例1 在△ABC中,∠BAC=90°,AD⊥C,∠ABC的平分线交AD于F,交AC于E,求证:DF:FA=AE:EC.(初中《几何》第二册总复习题18题)。 思路:如图1,由本题结论特点,可寻找第三个比:分别在△ABD和△ABC中应用三角形内角平分线定理,得DF/FA=BD/AB和AE/EC=AB/BC.如果BD/AB与AB/BC相等,问题即解决。由直角三角形比例中项定理可得AB~2=BD×BC,即BD/AB=AB/BC.  相似文献   

9.
角平分线是指把一个角分成两个相等的角的射线.关于角平分线具有如下重要的性质:角平分线上的点到角的两边的距离相等.对于一些含角平分线条件的证明问题,巧用这个性质,能简化解题过程,达到事半功倍的效果例1如图,△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:EB=FC.证明:∵AD平分∠BAC,又DE⊥AB于E,DF⊥AC于F,∴DE=DF.在△BDE和△CDF中,∵∠DEB=90°,∠DFC=90°,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC例2如图,△ABC中,O为∠A、∠B平分线的交点,OD⊥BC于D,OE⊥…  相似文献   

10.
学习了三角形全等的判定以后,可以利用全等三角形的性质(全等三角形的对应边相等,对应角相等)解决许多类型的几何问题,如下面几例.一、证明线段相等例1在△凸ABC中,∠BAC=90°,∠ABC的平分钱交AC于E,交BC边上的高于D,过D作直线平行于BC交AC于F.求证:AE=CF.证明如图1,作DM⊥AB交AB于M,作FN⊥EC交BC于N.∵BE是∠B的平分线.二、证明角相等例2如图2,已知AC=AB,DE=DB,∠CAD=∠EDA=60°.求证:∠AFB=∠BGC证明∵AC=AB,DE=DB,又∠CAD=∠EDA=60°,..bABC和凸BDE都是等边三角…  相似文献   

11.
本文试图利用等圆的一个简单性质性质在等圆中,相等(或互补)的圆周角所对的弦相等, 给出某些几何题的又一种解题途径. 举例如下: 例1 已知△ABC中,AB=AC,BD=CE,DE交BC于M.求证DM=EM. 证明;设△BN和∠CW的外接圆半径分别为R_1,R_2,则 BD/sin∠1=2R_1.EC/sin∠2=2R_2.  相似文献   

12.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

13.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

14.
等腰梯形的功能是由等腰梯形的性质决定的.等腰梯形有这样几个性质:等腰梯形的两腰相等;等腰梯形的两条对角线相等;等腰梯形同一底上的两个底角相等.这就决定了等腰梯形有如下两个基本功能:1.利用等腰梯形可以证明两条线段相等;2.利用等腰梯形可以证明两角相等.例1如图1,在梯形ABCD中,AD/BC,ABC=60°,AB+AD=BC.求证:AC=BD.分析因为AC、BD是梯形ABCD的两条对角线,所以,欲证AC=BD,只须证梯形ABCD是等腰梯形即可,即只须证AB=CD(或ABC=DCB=60°).为此,需要添加适当的辅助线,把AB、CD迁移到一个…  相似文献   

15.
初二几何教材在“等腰三角形的判定”一节的开始 ,提出下面两道题 :其一是第 75页例 1,求证 :如果三角形一个外角的平分线平行于三角形的一边 ,那么这个三个形是等腰三角形。这就是 ,已知 :如图 ,∠ CAE是△ ABC的外角 ,∠ 1=∠ 2 ,AD∥ BC,求证 :AB=AC。  其二是第 76页练习题第 3题 ,已知 :如图 ,AD∥BC,BD平分∠ ABC。求证 :AB=AD。  这两道题提供了一种新的思路 :由平行线和角平分线的条件来推出一个三角形是等腰三角形。事实上 ,这个思路在解题中往往很有用处。例 1.已知 :如图 ,DC∥AB,AD∥ BC,∠ 1=∠ 2 ,∠ 3=∠ …  相似文献   

16.
等腰三角形“三线合一”性质 :等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。它包含以下三个真命题 :在△ ABC中 (如图 1) ,(1)若 AB=AC,AD⊥ BC,那么 BD=CD,∠ 1=∠ 2 ;(2 )若 AB=AC,BD=DC,那么 AD⊥ BC,∠ 1=∠ 2 ;(3)若 AB=AC,∠ 1=∠ 2 ,那么 AD⊥ BC,BD=DC。可以证明 ,上述三个命题的逆命题都是真命题。综合上述六个命题 ,可知 :在△ ABC中 ,如果 1AB=AC;2 AD⊥ BC;3BD=DC;4∠ 1=∠ 2四项中任意两项成立 ,那么其余两项一定成立。下面举例说明等腰三角形“三线合一”在解题中的应用。例 1.已知 :…  相似文献   

17.
一、填空题1.在ABCD中,若∠A+∠C=140°,则∠C=°,∠B=°.2.对角线相等且互相平分的四边形是,对角线相等且互相垂直的平行四边形是.3.若菱形的两条对角线长分别为6cm,8cm,则这个菱形的周长为,面积为.4.如图1,矩形ABCD的两条对角线交于O点,∠AOB=60°,AB=2cm,则矩形的对角线长是,矩形的周长是.图1图25.如图2,四边形ABCD是正方形,延长BC至点E,使CE=AC.连结AE,AE交CD于F,那么∠AFC度数是.6.如图3,直线l是四边形ABCD的对称轴,且AB=CD.今给出下面四个结论:①AB∥CD;②CA⊥BD;③AO=OC;④AB⊥BC.其中正确的结论是.图3图4…  相似文献   

18.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

19.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

20.
<正>数学有很多奇妙之处.下面,通过对苏教版八年级教材中一道题的引申,向大家展示三角形中两个角之间的奇妙关系.原题如图1,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.试求∠DAE的度数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号