首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
一、忽视定义域致错例1求函数y=x-(1-2x)~(1/2)的值域.错解由y=x-(1-2x)~(1/2)得X~2 (1-y)x y~2-1=0.因为关于x的二次方程恒有实根,所以有△=[2(1-y)]-4 (y~2-1)≥0,解得y≤1.故函数的值域为(-∞,1).剖析△=[2(1-y)]~2-4(y~2-1)≥0只能保证方程x~2 2(1-y)x y~2-1=0在整个R上有实根,而不能保证在(-∞,1/2](函数的定义域)上也有实根.  相似文献   

2.
研究函数,常要求函数值域。本文介绍一些无理函数值域求法。 1.y=(ax b)~(1/2)(a≠0)型分析 这种类型的无理函数是最基本的。从观察不难看出值域为{y|y≥0且y∈R}. 2.y=px q±(ax b)~(1/2)型 例1 求y=x 4 (2x 4)~(1/2)的值域。 解令t=(2x 4)~(1/2)(t≥0)则x=(t~2-4)/2(t≥0). ∴原函数为y=(t~2-4)/(2) 4 t=((t 1)~(2) 3)/2 (t≥0), ∴y≥2,原函数值域为{y|y≥2且y∈R}.  相似文献   

3.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

4.
对于形如y=(a1x2 b1x c1)/(a2x2 b2x c2)(a1,a2不同时为0)的函数,常常用根的判别式法求其值域。这是利用方程思想、等价转化思想将所给函数转化为关于x的一元二次方程,通过方程有根,判别式Δ≥0,从而求得原函数值域。根据函数定义域的不同,一般可分为2种类型。一、函数定义域为实数集R例1:求函数y=2xx22 24xx -37的值域解:∵分母x2 2x 3=(x 1)2 2≥2∴函数定义域为R将原函数变形为(2-y)x2 (4-2y)x 7-3y=0(1)当y=2时,方程(1)无解。当y≠2时,(在用判别式前要检查方程二次项系数),由于x∈R∴方程(1)有实数解。∴Δ=(4-2y)2-4(2-y)(7-3y)≥0…  相似文献   

5.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

6.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

7.
众所皆知,增设性构作给某些数学问题的求解带来化繁为简的生机,但不恰当的增设性构作给某些数学问题的解答蒙上消极被动的阴影,未必被众人所晓,下面对此进行剖析。一只图形式忽视本质增设性构作常诞生于审析问题的形式结构之中,初步产生后将继续结合问题解答的需要逐步修正完善,千万可可忽视,修正完善过程。例1 求函数f(x)=x+(1-x~2)~(1/2)的值域。错解:设x=sinθ,则y=sinθ+cosθ=(2sin(θ+σ/4))~(1/2) 函数f(x)的值域是[-2~(1/2),2~(1/2)]。剖析:这里仅注意f(x)的定义域与三角函数值域之关系,选用三角代换,而忽视了x=sinθ时,(1-x~2)~(1/2)=cosθ≥0并非对任意实数θ恒成立。应将增设修正为x=sinθ,θ∈[-1/2π,1/2π],得出正确结果[-1,2~(1/2)]。例2 求函数y=(x~2-8x+17)~(1/2)+(x~2+4)~(1/2)的最小值。错解:∵ y=((x-4)~2+1)~(1/2)+((x~2+2~2)~(1/2) ∴设z_1=(x-4)+i,z_2=-x-2i, 则y=|z_1|+|z_2|≥|z_1+z_2|=(17)~(1/2),y的最小值是(17)~(1/2)。  相似文献   

8.
函数是中学教学中的重点内容之一 .由于函数的值域在教材中阐述其求法甚微 ,因而有不少的同学在求函数的值域时 ,无从着手 .为了帮助同学们在求值域时有一套较系统的方法 ,在这里归纳几种常用方法 ,供读者参考 .1 反函数法如函数 y =f (x)有反函数 ,则 y =f -1 (x)的定义域也就是 y =f (x)的值域 .例 1 求 y =f (x) =2 x2 x + 1的值域 .解 :原函数的反函数为y =f -1 (x) =log2x1-x.其定义域由 x1-x>0来确定 ,所以 0 相似文献   

9.
一、反解时忽视了原函数的定义域例1求y=x2+4x+2(0≤x≤2)的反函数. 错解:因为y=-x1+4x+2=-(x-2)2+6(0≤x≤2),y∈[2,6],所以x=2±(6-y)~(1/2).则反函数为y=2±(6-x)~(1/2)(2≤x≤6). 上述解法在解x时,没有根据原函数的定义域对x进行合理取舍,应将x=2+(6-x)~(1/2)舍去.正确的反函数为y=2-(6-x)~(1/2)(2≤x≤6).  相似文献   

10.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

11.
1 把值域当有界例 1 求证 :y=x2 - x 1x2 x 1的值域为[1/3,3].错证 因 (x2 - x 1x2 x 1- 13) (x2 - x 1x2 x 1-3) =(2 x2 - 4 x 2 ) (- 2 x2 - 4 x- 2 )(x2 x 1) 2 =-4 ( x-1) 2 ( x 1) 2( x2 x 1) 2 ≤ 0 ,所以 13≤x2 - x 1x2 x 1≤3(x∈R) ,即 y=x2 - x 1x2 x 1的值域为 [13,3].分析 上面证明显然是把值域当成了 y值有界 ,而并未证明 [1/3,3]是 y的值域 .因为作为值域 ,y值必须具备下面 2点 :(1) y∈[1/3,3];(2 ) y值充满区间 [1/3,3].下面证明 y=x2 - x 1x2 x 1函数值充满 [13,3]: y0 ∈ [13,3],将函数式变形 ,(y0 - 1) x2…  相似文献   

12.
求函数 y=x+(1-2x)~(1/2)的值域,一般用如下方法:由函数式得 y-x=(1-2x)~(1/2)(1)两边平方得 y~2-2xy+y~2=1-2x(2)整理得 x~2-2(y-1)x+(y~2-1)=0 (3)∵ x 是实数,  相似文献   

13.
算术——几何平均值的应用非常广泛,这是大家所熟知的。本文的目的是说明它除了用来证明不等式和求函数的极值外,还能解决一些特殊方程的问题。兹仅举二例略述一二,供参考。例1.求方程x(2-y~2)~(1/2) y(2-x~2)~(1/2)=2的正整数解解:∵ x,y为正数, ∴ x(2-y~2)~(1/2)≤(x~2 (2-y~2)/2 (1) (等号仅在x~2=2-y~2成立) y(2-x~2)~(1/2)≤(y~2 (2-x~2)/2 (2) (等号仅在y~2=2-x~2成立) (1) (2)得:x(2-y~2)~(1/2) y(2-x~2)~(1/2)≤2 但由方程x(2-y~2)~(1/2) y(2-x~2)~(1/2)=2 显然等号在x~2=2-y~2和y~2=2-x~2时取得故 x~2=2-y~2即x~2 y~2=2 ∵ x,y为正整数,∴ x=1,y=1  相似文献   

14.
方法一:反函数法根据反函数的性质,一个函数若存在反函数,那么反函数的定义域就是原函数的值域.这样,从原函数表达式y=f(x)中,解出自变量x来,得到一个以y为变量,x为函数的新函数x=f-1(y),这个函数自变量y的取值范围,就是原函数y=f(x)的值域.这个方法一般适用于分子、分母都是一次式的分式函数.例1.求函数y=1-x2x+5的值域.分析:因为y=1-x2x+5=-12+722x+5图象为以点(-52,-12)为中心,平行于x轴,y轴两条相交线为渐近线的双曲线.从自变量x到函数y是一一映射,存在反函数.解:由y=1-x2x+5得x=1-5y2y+1,这个函数中,自变量y的取值范围是y≠-12.所以,原…  相似文献   

15.
一、复合函数复合函数的单调性,可利用"同增异减"来确定例1求函数y=(x~2-2008x)~(1/2)的单调递增区间.解:首先,由x~2-2008x≥0,得x≤0或x≥2008.所以函数的定义域是(-∞,0)∪[2008, ∞).①其次,由于函数y=n~(1/2)在[0, ∞)上是增函数,所以求函数y=(x~2-2008x)~(1/2)的单调递增  相似文献   

16.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

17.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

18.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

19.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

20.
在求形如 y =ax2 bx cdx2 ex f的值域时 ,可将函数转化为关于x的二次方程 ,通过判别式求出函数的值域 .但利用Δ法求函数值域时应注意以下两个问题 .1 .如果函数 y =ax2 bx cdx2 ex f(d≠ 0 )的分母含关于x的二次三项式 ,分子的最高次是二次或一次或零次 ,函数的定义域为R ,可采用Δ法求函数的值域 .例 1 求函数 y=2x2 2x 3x2 x 1 的值域 .解 :令 g(x) =x2 x 1 ,其Δ =1 2 -4=-3 <0 ,∴故 g(x) =x2 x 1 >,函数 g(x)的定义域为R .∴已知函数可化成(y -2 )x2 (y -2 )x y -3 =0 .∵x∈R且 y≠ 2 ,∴关于x的方程应有Δ =(y…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号