首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to examine age and sex differences in elbow extensor and flexor anatomical muscle cross-sectional area (mCSA) measured by magnetic resonance imaging (MRI) and the location of maximal mCSA as a percentage of the distance from the distal to the proximal end of the humerus. Ninety-five individuals spread across the age groups 9 - 10 years, 16 - 17 years and ?21 years participated in the study. Muscle cross-sectional area derived from the manual MRI tracing proved to be highly reliable in terms of limits of agreement (-2.5 to 1.5 cm(2)) and the intraclass correlation coefficient (ICC = 0.998). A sex-by-age group analysis of variance revealed significant effects (P < 0.01) of sex, group and a sex-by-group interaction, the latter reflecting a greater increase in males than females of upper arm mCSA from childhood to adulthood. Extensor mCSA was more proximal (55 +/- 6%) than that of the flexors (28 +/- 6%). A significant effect (P < 0.01) of group was found for location of maximal extensor mCSA, reflecting its more distal position with increasing age. Measurements of muscle size should be made at the individually determined position of maximal mCSA if interpreting data collected during growth and maturation, especially if the muscle group of interest is the elbow extensors and if different age groups are being monitored.  相似文献   

2.
To investigate characteristic upper limb muscle use between two common tug of war (TOW) gripping styles, 20 elite athletes from two high school TOW teams were recruited. Under conditioned attack pulling (with 90% maximal force) on a tug machine, participants used their own habitual gripping style to pull for five 15-s trials. Force and kinematic measurements showed a significantly better force performance and higher centre-of-gravity tilting angle with the gripping style one than with the gripping style two (GS2) (both p < 0.05). However, an overall higher and more symmetrical muscle activation detected by normalised surface electromyography signal amplitude was found in the GS2 group (both p < 0.05). In both groups, the distal and flexor muscles were more activated than the proximal and extensor muscles, respectively (p < 0.05). Higher co-contraction ratio was found in the wrist joints of the latter arm in both groups (p < 0.05). As higher muscle activation level and co-contraction indicate higher muscle and joint injury incidences, we suggest that gripping style factors should be considered in training to prevent muscle and joint injury. Future study concerning segmental kinematics, ground reaction force, moment arm and muscle endurance during the defence phase are warranted.  相似文献   

3.
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque–angle (T–A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s-1. Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T–A relationship had an inverted “U”-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.  相似文献   

4.
This study assesses the longitudinal changes in anthropometric and motor parameters of ski jumpers. Male ski jumpers (n = 329) at various competitive levels participated in this study. These competitors were divided into two groups by age (18 years and younger, and over 18 years), and then divided into seven even intervals within those groups. Basic anthropometric parameters, maximal relative isometric knee extensor force, reaction time, knee extension time, and vertical jump height were measured. The conditions, instruments, and systems of measurement were consistent throughout the study. A reduced body mass index (BMI) in the adult jumpers was significant (P < .01) in the first three (1982–1993) and in the last three (1998–2010) intervals. Adults had an increase of maximal relative isometric knee extensor force (P < .01) in the last three intervals (1998–2010). They had greater maximal relative isometric knee extensor force (with exception of the first interval, 1982–1985) and vertical jump height than younger competitors (P < .01). Both young and adult jumpers exhibited the increase of strength and power in the lower limbs and a decrease in BMI during the whole observed period.  相似文献   

5.
Although it is clear that rowers have a large muscle mass, their distribution of muscle mass and which of the main motions in rowing mediates muscle hypertrophy in each body part are unclear. We examine the relationships between partial motion power in rowing and muscle cross-sectional area of the thigh, lower back, and upper arms. Sixty young rowers (39 males and 21 females) participated in the study. Joint positions and forces were measured by video cameras and rowing ergometer software, respectively. One-dimensional motion analysis was performed to calculate the power of leg drive, trunk swing, and arm pull motions. Muscle cross-sectional areas were measured using magnetic resonance imaging. Multiple regression analyses were carried out to determine the association of different muscle cross-sectional areas with partial motion power. The anterior thigh best explained the power demonstrated by leg drive (r 2 = 0.508), the posterior thigh and lower back combined best explained the power demonstrated by the trunk swing (r 2 = 0.493), and the elbow extensors best explained the power demonstrated by the arm pull (r 2 = 0.195). Other correlations, such as arm muscles with leg drive power (r 2 = 0.424) and anterior thigh with trunk swing power (r 2 = 0.335), were also significant. All muscle cross-sectional areas were associated with rowing performance either through the production of power or by transmitting work. The results imply that rowing motion requires a well-balanced distribution of muscle mass throughout the body.  相似文献   

6.
Abstract

In this study, we examined the long-term reductions in maximal isometric force (MIF) caused by a protocol of repeated maximal isometric contractions at long muscle length. Furthermore, we wished to ascertain whether the reductions in MIF are dependent on muscle length — that is, are the reductions in MIF more pronounced when the muscle contracts at a short length. The MIF of the elbow flexors of seven young male volunteers was measured at five different elbow angles between 50° and 160°. On a separate day, the participants performed 50 maximal voluntary isometric muscle contractions with the elbow flexors at a lengthened positions that is, with the shoulder hyperextended at 45° and the elbow joint fixed at 140°. Following this exercise, the MIF at the five elbow angles, range of motion, muscle soreness and plasma creatine kinase activity were measured at 24 h intervals for 4 days. On day 1, the decline in MIF was higher at the more acute elbow angles of 50° (42±8%) and 70° (39±8%; both P<0.01) than at 90° (26±4%) and 140° (16±3%; both P<0.01). No significant reduction in MIF was evident at an elbow angle of 160°. Maximal isometric force at an elbow angle of 140° was fully restored on day 3, whereas at an angle of 50° it remained depressed for the 4 day observation period. Restoration of MIF was a function of the elbow angle, with force recovery being less at the smaller angles. The range of motion was decreased by 14±2° on day 1 (P<0.01) and did not return to baseline values by day 4. Muscle soreness ratings remained significantly elevated for the 4 day period. Serum creatine kinase peaked on day 1 (522±129 IU, P<0.01) and decreased thereafter. We conclude that the disproportionate decrease in MIF at the small elbow angles and the length-specific recovery in MIF after repeated maximal isometric contractions at long muscle length may be explained by the presence of overstretched sarcomeres that increased in series compliance of the muscle, therefore causing a rightward shift of the force-length relationship.  相似文献   

7.
The purpose of this study was to examine the effect of a 12-week resistance training programme on fat-free mass (FFM), muscle cross-sectional area, muscular strength and muscle quality in women who underwent Roux-en-Y gastric bypass surgery. Participants were 16 women (mean age = 44.9 ± 10.2 years) from bariatric surgical groups who were randomly assigned into either a control or an intervention group. Air displacement plethysmography measured FFM and magnetic resonance imaging measured quadriceps muscle cross-sectional area and whole thigh muscle cross-sectional area. Muscular strength and quality was assessed using an estimated 1-Repetition Maximum assessment. All measurements were collected twice, at baseline and at a 12-week follow-up. There were significantly greater improvements in leg press strength (mean differences = 55.4%, P < 0.001, Cohen’s d = 2.4), leg extension strength (mean differences = 18.0%, P = 0.014, Cohen’s d = 0.86) and leg press muscle quality (mean differences = 54.5%, P < 0.001, Cohen’s d = 1.9) in the intervention group compared to the control group following the resistance training programme. The resistance training intervention significantly improved muscular strength and quality; however, it did not illicit changes in FFM or muscle cross-sectional area in women who underwent Roux-en-Y gastric bypass surgery.  相似文献   

8.
9.
Purpose: The purpose of this study was to investigate the physiological adaptations of resistance training (RT) in prepubertal boys. Methods: Eighteen healthy boys were divided into RT (n = 9, Mage = 10.4 ± 0.5 years) and control (CTR; n = 9, Mage = 10.9 ± 0.7 years) groups. The RT group underwent a resistance training during 12 weeks, 3 times per week, performing 3 sets of 6 to 15 repetitions at intensities ranging from 60% to 80% of maximal dynamic strength (1-repetition maximum [1-RM] values). Before and after the training, the groups were assessed in their body mass and composition (dual-energy X-ray absorptiometry), isokinetic dynamometry, 1-RM, and ergoespirometry. Moreover, force per unit of muscle volume was calculated by the quotient between 1-RM and lean mass. Results: Both groups presented statistically significant (p < .05) increases in the 1-RM and force per unit of muscle volume in the knee extension and elbow flexion, but these strength increases were statistically significantly greater in the RT group (effect size [ES] = 2.83–9.00) than in the CTR group (ES = 0.72–1.00). Moreover, both groups statistically significantly increased in lean body mass variables (ES = 0.12–0.38). However, increases in the fat mass variables occurred only in the CTR group (ES = ? 0.01–0.50), whereas no changes were observed in the RT group. Furthermore, there were statistically significant increases in all bone mineral content variables (ES = 0.13–0.43), without differences between groups. No cardiorespiratory changes were observed. Conclusion: Twelve weeks of RT was effective in improving strength and force per unit of muscle volume and prevented fat mass increases in boys.  相似文献   

10.
Rowers need to combine high sprint and endurance capacities. Muscle morphology largely explains muscle power generating capacity, however, little is known on how muscle morphology relates to rowing performance measures. The aim was to determine how muscle morphology of the vastus lateralis relates to rowing ergometer performance, sprint and endurance capacity of Olympic rowers. Eighteen rowers (12♂, 6♀, who competed at 2016 Olympics) performed an incremental rowing test to obtain maximal oxygen consumption, reflecting endurance capacity. Sprint capacity was assessed by Wingate cycling peak power. M. vastus lateralis morphology (volume, physiological cross-sectional area, fascicle length and pennation angle) was derived from 3-dimensional ultrasound imaging. Thirteen rowers (7♂, 6♀) completed a 2000-m rowing ergometer time trial. Muscle volume largely explained variance in 2000-m rowing performance (R2 = 0.85), maximal oxygen consumption (R2 = 0.65), and Wingate peak power (R2 = 0.82). When normalized for differences in body size, maximal oxygen consumption and Wingate peak power were negatively related in males (r = ?0.94). Fascicle length, not physiological cross-sectional area, attributed to normalized peak power. In conclusion, vastus lateralis volume largely explains variance in rowing ergometer performance, sprint and endurance capacity. For a high normalized sprint capacity, athletes may benefit from long fascicles rather than a large physiological cross-sectional area.  相似文献   

11.
Abstract

The aim of this study was to determine if inducing metabolic alkalosis would alter neuromuscular control after 50 min of standardized submaximal cycling. Eight trained male cyclists (mean age 32 years, s = 7; [Vdot]O2max 62 ml · kg?1 · min?1, s = 8) ingested capsules containing either CaCO3 (placebo) or NaHCO3 (0.3 g · kg?1 body mass) in eight doses over 2 h on two separate occasions, commencing 3 h before exercise. Participants performed three maximal isometric voluntary contractions (MVC) of the knee extensors while determining the central activation ratio by superimposing electrical stimulation both pre-ingestion and post-exercise, followed by a 50-s sustained maximal contraction in which force, EMG amplitude, and muscle fibre conduction velocity were assessed. Plasma pH, blood base excess, and plasma HCO3 were higher (P < 0.01) during the NaHCO3 trial. After cycling, muscle fibre conduction velocity was higher (P < 0.05) during the 50-s sustained maximal contraction with NaHCO3 than with placebo (5.1 m · s?1, s = 0.4 vs. 4.2 m · s?1, s = 0.4) while the EMG amplitude remained the same. Force decline rate was less (P < 0.05) during alkalosis-sustained maximal contraction and no differences were shown in central activation ratio. These data indicate that induced metabolic alkalosis can increase muscle fibre conduction velocity following prolonged submaximal cycling.  相似文献   

12.
Previous studies suggested that a pronounced weakness of the extensor muscles relative to the flexor muscles could increase the risk of occurrence of lateral epicondylalgia. This study investigates this hypothesis by estimating the ratio of extensor to flexor muscle capacities among healthy non-players (n = 10), healthy tennis players (n = 20), symptomatic players (n = 6), and players who have recovered from lateral epicondylalgia (n = 6). Maximum net joint moments in flexion or extension were measured during seven tasks involving the voluntary contraction of wrist and fingers. Using these data, the muscle capacities of the main muscle groups of the hand (wrist flexors, wrist extensors, finger flexors, finger extensors, and intrinsic muscles) were estimated using a musculoskeletal model. These capacities were then used to compute the extensor/flexor capacity ratios about the wrist and the finger joints. Compared to healthy non-players, healthy players presented higher extensor muscle capacities and greater capacity ratios showing that playing tennis generates specific adaptations of muscle capacities. Interestingly, symptomatic players, similar to those of non-players, showed more imbalanced ratios than healthy players. These results confirm that the ratio of extensor/flexor muscle capacities seems to be associated with lateral epicondylalgia and can be further used to understand its incidence and consequences.  相似文献   

13.
Consecutive proximal-to-distal sequencing of motion is considered to be integral for generating high velocity of distal segments in many sports. Simultaneous usage of proximal and distal segments as seen in martial arts is by far less well investigated. Therefore, the aim of the study was to characterise and differentiate the concepts of consecutive (CSM) and simultaneous (SSM) sequence of motion in straight reverse punches as practised in Practical Wing Chun. Four experienced martial artists succeeded an eligibility test for technical proficiency in both concepts and performed a total number of 20 straight punches per concept. Eight MX13 Vicon cameras (250 fps) and Visual3D were used for motion capture and analyses. Both motion concepts showed proximal-to-distal sequencing of maximal joint velocities but, in SSM, this was coupled with simultaneous initiation. Key characteristics were: high pelvis momentum and backswing of shoulder and elbow (CSM); and importance of shoulder involvement (SSM). Different ranges of motion, timing aspects and achieved maximal angular velocities distinguished both concepts, which led to differences (p < 0.05) in fist velocity at contact, execution time, distance and horizontal shift of the centre of mass. Proper application of both concepts depends on the environmental setting, situational requirements and individual fighting style.  相似文献   

14.
Abstract

In the present study, we examined the relationships between muscle volume and joint torque for the elbow flexors and extensors in young and elderly individuals, with the aim of evaluating age effects on these relationships. The participants were 45 young (27 men and 18 women aged 20–37 years) and 51 elderly (19 men and 32 women aged 60–77 years) individuals. The joint torques developed during isometric maximal voluntary elbow flexion and extension were measured using a torque meter. The muscle volumes of the elbow flexors and extensors were determined by magnetic resonance imaging. For the elbow flexors, joint torque was significantly correlated with muscle volume in both young and elderly individuals (r=0.564–0.872). There were also significant correlations between muscle volume and joint torque for the elbow extensors in elderly men and women as well as in young men and women (r=0.715–0.826). None of the y-intercepts of the regression lines between muscle volume and joint torque were significantly different from zero. Furthermore, no significant age or gender effects on the joint torque per muscle volume of the elbow flexors and extensors were observed. The present results suggest that muscle volume is a main determinant of joint torque regardless of age and gender, for both muscle groups.  相似文献   

15.
Many coaches often instruct swimmers to keep the elbow in a high position (high elbow position) during early phase of the underwater stroke motion (pull phase) in front crawl, however, the high elbow position has never been quantitatively evaluated. The aims of this study were (1) to quantitatively evaluate the “high elbow” position, (2) to clarify the relationship between the high elbow position and required upper limb configuration and (3) to examine the efficacy of high elbow position on the resultant swimming velocity. Sixteen highly skilled and 6 novice male swimmers performed 25 m front crawl with maximal effort and their 3-dimensional arm stroke motion was captured at 60 Hz. An attempt was made to develop a new index to evaluate the high elbow position (Ihe: high elbow index) using 3-dimensional coordinates of the shoulder, elbow and wrist joints. Ihe of skilled swimmers moderately correlated with the average shoulder internal rotation angle (r = ?0.652, < 0.01) and swimming velocity (r = ?0.683, P < 0.01) during the pull phase. These results indicate that Ihe is a useful index for evaluating high elbow arm stroke technique during the pull phase in front crawl.  相似文献   

16.
Abstract

Ten healthy males and ten healthy females aged 21.5 ± 3.2 years (mean ± s) participated in the study, which was designed to evaluate the effectiveness of sensory level-high volt pulsed electrical current (HVPC) on delayed-onset muscle soreness (DOMS). Arm discomfort, elbow extension range of motion and isometric elbow flexion strength were obtained as baseline measurements. Delayed-onset muscle soreness was induced in the participants' dominant or non-dominant arm using two sets of 20 maximal eccentric elbow flexion contractions. After the induction of DOMS, the participants were randomly divided into an experimental condition (HVPC) or a placebo condition. The experimental condition consisted of 20 min of HVPC immediately after the induction of DOMS, and 20 min every 24 h for three consecutive days thereafter. The participants in the placebo condition received an intervention similar in design; however, no electrical current was administered. Baseline measurements were reevaluated at 24, 48, 72 and 96 h after the induction of DOMS. Three weeks later, the participants returned and the protocol was repeated on the contralateral limb, using the opposite intervention (HVPC or placebo). Repeated-measures analysis of variance revealed a significant increase in overall arm discomfort, decrease in elbow extension and decrease in isometric strength for both conditions over time. No significant main effect of treatment, or time-by-treatment interaction, was found for the HVPC condition when compared with the placebo condition for any variable. Sensory-level HVPC, as utilized in our application, was ineffective in reducing the measured variables associated with DOMS.  相似文献   

17.
Abstract

The aim of this study was to examine the effect of concentric warm-up exercise on eccentrically induced changes in muscle strength, range of motion, and soreness of the elbow flexors. Ten resistance-exercise naïve participants performed intermittent incremental eccentric actions (42 in total) of the elbow flexor muscles of each arm to induce muscle damage. The arms of each participant were randomly assigned either to a pre-eccentric exercise warm-up involving intermittent concentric exercise (warm-up) or no prior exercise (control). Strength, range of motion, and ratings of soreness were recorded before and 1, 2, 3, 4, and 7 days after exercise. Strength, range of motion, and soreness during muscular movements changed over time (P at most 0.01; Cohen's d at least 0.51, medium). There was an interaction (P < 0.001) for strength, showing a smaller reduction after exercise for warm-up than control (P < 0.001, d = 2.44, large effect). The decreased range of motion was less for warm-up than control for the arm while extended (P < 0.001), flexed (P = 0.002), and relaxed (P = 0.004). Muscle soreness was reduced for the warm-up group, while the muscle was flexed, extended, and relaxed compared with control (P < 0.001). The results demonstrate that a concentric warm-up exercise attenuates the reduction in loss of strength, range of motion, and muscle soreness after eccentric-exercise-induced muscle damage and might allow higher intensities of training to be performed.  相似文献   

18.
ABSTRACT

This study aimed to (1) evaluate the shape of the force-velocity (F-V) relationship obtained from different muscles, (2) explore the concurrent validity of the two-point method with respect to the multiple-point method, (3) evaluate whether the F-V relationship can discriminate between muscle groups and genders, and (4) explore the generalisability of the same F-V relationship parameters (maximal force [F0], maximal velocity [V0]), and maximal power [P0]) between different tasks. The F-V relationship of 22 physically active participants (12 women) were tested during knee extension, knee flexion, elbow extension and elbow flexion through the multiple- (eight velocities: 30-60-90-120-150-180-210-240º/s) and two-point (two velocities: 60–180º/s) methods. The findings revealed (1) highly linear F-V relationships (r ≥ 0.893), (2) high concurrent validity of the two-point method for F0, but lower for V0 and P0, (3) the outcomes of both methods were sensitive to the muscle groups (higher for knee muscles) and gender (higher for men), and (4) the magnitude of the same F-V parameters were poorly correlated between different tasks (median r < 0.1). These results support the two-point method as a valid and sensitive procedure for determining the maximal capacities of the muscles to produce F, but not V, during isokinetic tests.  相似文献   

19.
The present investigation was performed to elucidate if the non-erythropoietic ergogenic effect of a recombinant erythropoietin treatment results in an impact on skeletal muscle mitochondrial and whole body fatty acid oxidation capacity during exercise, myoglobin concentration and angiogenesis. Recombinant erythropoietin was administered by subcutaneous injections (5000 IU) in six healthy male volunteers (aged 21 ± 2 years; fat mass 18.5 ± 2.3%) over 8 weeks. The participants performed two graded cycle ergometer exercise tests before and after the intervention where VO2max and maximal fat oxidation were measured. Biopsies of the vastus lateralis muscle were obtained before and after the intervention. Recombinant erythropoietin treatment increased mitochondrial O2 flux during ADP stimulated state 3 respiration in the presence of complex I and II substrates (malate, glutamate, pyruvate, succinate) with additional electron input from β-oxidation (octanoylcarnitine) (from 60 ± 13 to 87 ± 24 pmol · s?1 · mg?1 P < 0.01). β-hydroxy-acyl-CoA-dehydrogenase activity was higher after treatment (P < 0.05), whereas citrate synthase activity also tended to increase (P = 0.06). Total myoglobin increased by 16.5% (P < 0.05). Capillaries per muscle area tended to increase (P = 0.07), whereas capillaries per fibre as well as the total expression of vascular endothelial growth factor remained unchanged. Whole body maximal fat oxidation was not increased after treatment. Eight weeks of recombinant erythropoietin treatment increases mitochondrial fatty acid oxidation capacity and myoglobin concentration without any effect on whole body maximal fat oxidation.  相似文献   

20.
This study aims to (1) determine whether isometric training at a short vs. long quadriceps muscle length affects concentric torque production; (2) examine the relationship between muscle hypertrophy and concentric torque; and (3) determine whether changes in fascicle length are associated with changes in concentric torque.

Sixteen men performed isometric training at a short (SL, n = 8) or a long muscle length (LL, n = 8). Changes in maximal concentric torque were measured at 30, 60, 90, 120, 180, 240 and 300 rad · s?1. The relationships between the changes in concentric torque, cross-sectional area, volume and fascicle length were tested.

Concentric torque increased significantly after training only in LL and at angular velocities of 30 and 120 rad · s?1 by 12–13% (P < 0.05). Muscle size increased in LL only, the changes were correlated (r = 0.73–0.93, P < 0.05) with the changes in concentric torque. Vastus lateralis (VL) fascicle length increased in both groups (5.4 ± 4.9%, P = 0.001) but the change was not correlated with changes in concentric torque in either group.

Isometric training-induced increases in muscle size and concentric torque were best elicited by training at long muscle lengths. These results highlight a clear muscle length dependence of isometric training on dynamic torque production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号