首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO2粉末。利用X射线衍射谱,扫描电子显微镜和紫外-可见光分光光度计分别研完了焙烧温度对TiO2粉末的微结构、形貌与紫外光光催化性能的影响。实验结果表明:随着焙烧温度的升高,TiO2粉末发生了锐钛矿到金红石结构的相变。相变温度大约在625K-675K,且等轴状颗粒的尺寸逐渐增加。同时发现锐铁矿结构的TiO2粉末对甲基橙的紫外光光催化活性最高,而无定形及金红石结构的粉末不利于粉末的紫外光光催化活性。  相似文献   

2.
本文以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO2粉末。利用X射线衍射谱、拉曼光谱、扫描电子显微镜和紫外-可见光分光光度计分别研究了Ce/TiO2粉末的微结构、形貌与紫外光光催化性能的影响。实验结果表明:Ce的掺杂抑制了TiO2的相变,同时发现Ce掺杂量为0.3%、煅烧温度为675k时制备的锐钛矿型Ce/TiO2粉末对甲基橙的紫外光光催化活性最高。  相似文献   

3.
纳米TiO_2对染料敏化纳米薄膜太阳电池的影响   总被引:7,自引:0,他引:7  
在染料敏化纳米薄膜太阳电池中 ,纳米TiO2 是重要的组成物质之一 .用溶胶 凝胶法制备纳米TiO2 的过程中 ,为了控制纳米TiO2 的大小及晶型采用了一系列方法 .主要介绍热处理方法及实验结果 .随着热处理温度的升高 ,纳米TiO2 的晶粒度随着长大 .而且当水解pH~1 ,热处理温度达到 2 70℃时就已经有 43 %的金红石相纳米TiO2 出现 .通过计算发现 ,其中金红石相纳米TiO2 比锐钛矿相纳米TiO2 的晶粒度大得多 .将制备的纳米TiO2 应用于染料电池 ,通过太阳电池的测试实验证实 ,合适的热处理温度可得到较好的光电转换效率  相似文献   

4.
曹殿钧 《金秋科苑》2012,(20):127-128
利用溶胶-凝胶法制备出不同Mn掺杂浓度、不同退火温度的Mn掺杂TiO2粉末样品。研究了Mn掺杂浓度和退火温度对Mn掺杂TiO2粉末样品光催化性质的影响。发现Ti0.998Mn0.002样品光催化活性顺序为:500℃〉400℃〉600℃〉700℃。并且随着掺杂浓度增加,对罗丹明光催化活性下降。掺杂浓度为0.2%的样品光催化活性最好。  相似文献   

5.
曹殿钧 《今日科苑》2012,(20):127-128
利用溶胶-凝胶法制备出不同Mn掺杂浓度、不同退火温度的Mn掺杂TiO2粉末样品。研究了Mn掺杂浓度和退火温度对Mn掺杂TiO2粉末样品光催化性质的影响。发现Ti0.998Mn0.002O2样品光催化活性顺序为:500℃>400℃>600℃>700℃。并且随着掺杂浓度增加,对罗丹明光催化活性下降。掺杂浓度为0.2%的样品光催化活性最好。  相似文献   

6.
纳米TiO2对染料敏化纳米薄膜   总被引:5,自引:0,他引:5  
在染料敏化纳米薄膜太阳电池中,纳米TiO2是重要的组成物质之一.用溶胶-凝胶法制备纳米TiO2的过程中,为了控制纳米TiO2的大小及晶型采用了一系列方法.主要介绍热处理方法及实验结果.随着热处理温度的升高,纳米TiO2的晶粒度随着长大.而且当水解pH~ 1,热处理温度达到270℃时就已经有43%的金红石相纳米TiO2出现.通过计算发现,其中金红石相纳米TiO2比锐钛矿相纳米TiO2的晶粒度大得多.将制备的纳米TiO2应用于染料电池,通过太阳电池的测试实验证实,合适的热处理温度可得到较好的光电转换效率.  相似文献   

7.
利用溶胶凝胶法制备了SO_4~(2-)/Bi_2O_3-TiO_2光催化剂,样品结构经过X-射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、红外光谱仪(IR)、热重分析仪(TGA)等测试手段进行了表征,以罗丹明-B作为目标污染物,在可见光照射下测试了该光催化剂的光催化活性,结果表明:该光催化剂主要由锐钛矿TiO2和四方体的Bi2O3组成,SO_4~(2-)主要以螯合双配位方式结合在Bi_2O_3-TiO_2表面,并在500℃焙烧的光催化剂具有更高的脱色效率,在罗丹明-B初始浓度为8mg/L和催化剂用量为600mg/L时,脱色效率可达97.89%,该光催化剂可以应用于有色废水的净化处理中。  相似文献   

8.
以钛酸四丁酯为原料,添加了铁元素和氟元素,并掺杂不同量的聚丙烯酰胺采用溶胶凝胶法制备了不同煅烧温度下的纳米TiO2粉体,在紫外光照射后,通过紫外-可见分光光度计测量了光催化降解反应后降解率的变化。实验表明:添加适量聚丙烯酰胺有助提高TiO2的活性,细化晶粒,在500℃时其催化效率最高。  相似文献   

9.
微乳液法制备纳米二氧化钛及其光催化降解苯酚的研究   总被引:3,自引:0,他引:3  
本研究以TiCl4为原料,在CTAB/正丁醇/环己烷/水组成的微乳液体系中制备了纳米TiO2粉末。采用透射电子显微镜和X光衍射仪等对粉体的粒径、物相、形貌和热稳定性等进行了表征。通过粉体对苯酚的降解情况对其光催化活性进行了测试,结果表明TiO2具有良好的光催化氧化性能。  相似文献   

10.
采用溶胶-凝胶法制备稀土元素(La3+、Ce3+)掺杂TiO2光催化剂,利用XRD、SEM、EDS、IR 进行表征,并以亚甲基蓝为光降解反应对象,进行光催化降解实验,考察了掺杂稀土元素对TiO2光催化性能的影响。结果表明:La3+和Ce3+掺杂TiO2使得光催化剂的活性提高;煅烧温度为400℃时,掺杂La3+和Ce3+的TiO2光催化活性分别最佳,最佳掺杂量分别为1.0%和1.5%;0.5h光照后,二者降解率均达到90%以上。  相似文献   

11.
锐钛矿相TiO2半导体因较宽的禁带宽度、较低的量子产率等使得它在可见光催化方面的性能受到很大的影响。本文概述了近几年对纳米TiO2进行掺杂改性的方法,提高其光催化性能。  相似文献   

12.
本文论述了TiO2的表面敏化及利用TiO2掺杂改性从而提高TiO2光催化的活性.  相似文献   

13.
张一兵 《科技通报》2011,27(6):833-836
以TiCl3溶液为原料,用水解法在玻璃基板上制备了TiO2,采用SEM和XRD技术对产物进行了表征,研究了影响产物形成的因素.结果表明:生成的TiO2晶体为金红石型.生成的TiO2微米球直径为2-3 μm,它由TiO2纳米棒自组装而成.生成的TiO2薄膜均匀、致密,厚1~2 μm,它由TiO2纳米棒阵列而成.TiO2纳...  相似文献   

14.
采用柠檬酸法合成钙钛矿复合材料LaFeO3,研究制备条件对其活性的影响,并测定该系列样品对不同水溶性染料溶液的光催化降解效率.采用XRD、SEM、光声光谱图等手段对样品进行了表征.结果表明,在柠檬酸加入量和焙烧温度一定时,反应体系的pH值在1-2、成胶温度为80℃时制备的LaFe03样品悬浮溶液中,亚甲基蓝溶液仅由光催化引起的脱色率迭48.17%.  相似文献   

15.
本文讲述了TiO2的一些常用制备方法。致力于提高纳米TiO2的光催化活性、揭示掺杂改性的作用机理。针对目前光催化技术应用中存在的诸如TiO2光催化量子效率低、吸收利用波长范围有限等问题,使用过渡金属离子和稀土元素通过湿溶液浸渍法对纳米TiO2进行了掺杂改性研究,采用X-射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis)测试手段对各种改性纳米TiO2进行物性表征。通过掺杂离子降解溶液中的染料罗丹明B的效果进行了评价。  相似文献   

16.
为了解国内TiO2光催化技术的知识产权现状,掌握专业领域的发展动向,预见其技术市场的发展趋势,对截止到2012年的TiO2光催化技术的国内专利文献进行检索统计,并从专利申请量、时间地区分布、申请人、专利技术构成等角度剖析了国内TiO2光催化技术的技术状况.建议国内企业充分依托科研机构,开展TiO2光催化技术产业化的研究,扩大其应用领域,发展具备我国自主知识产权的TiO2光催化技术布局.  相似文献   

17.
TiO2是一种经济、实用、无污染的环境友好催化剂。它自25年前人们发现它的电极上分解水的性质开始,受到了大众的关注。有关于染料敏化TiO2的研究已经开始,经实验证明发现用酞菁锌溶液敏化后的TiO2的光催化活性得到了明显的提高,其中小浓度酞菁锌溶液敏化TIo2得到的样品,它的光催化活性最好。  相似文献   

18.
梅婷  万世正 《科技风》2012,(13):17-18
本文基于密度泛函理论的平面波超软赝势法计算了 Eu、N 单掺杂和共掺杂锐钛矿相TiO2的电子结构和光学性质.结果表明,Eu 单掺杂 TiO2体系,可以减少光生电子-空穴对的复合速率;N 单掺杂 TiO2增强了其对可见光的响应;而 Eu/N 共掺杂引起晶格畸变,导致禁带宽度变窄,光吸收带边红移到可见光区,提高 TiO2的光催化效率以促进其更好的利用太阳能.  相似文献   

19.
王旭 《中国科技纵横》2009,(10):138-138,143
芦岭煤矿共生硬质高岭土矿赋存在下石盒子组底部的铝土泥岩中;其主要矿物为高岭石,次要矿物软水铝石,另有少量赤铁矿、金红石、锐钛矿等铁钛矿物;化学成分以2Al2O3、SiO2为主,Fe2O3+TiO2含量超过2%则不能圈定为矿体。芦岭煤矿共生硬质高岭土矿共划分四种自然类型:①灰白~浅灰色高岭土矿,②深灰~灰黑色高岭土矿,③花斑状高岭土矿,④灰色含黄铁矿或少量鲕状菱铁矿高岭土矿。  相似文献   

20.
文章描述了选择不同的焙烧温度制备纳米TiO2粉体,并介绍扫描电镜的工作原理及测试方法手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号