首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates consensus problem for heterogeneous discrete linear time-invariant (LTI) multi-agent systems subjected to time-varying network communication delays and switching topology. A new two-stage consensus protocol is proposed based on stochastic, indecomposable and aperiodic (SIA) matrix and pseudo predictive scheme. With pseudo predictive scheme the network delay is compromised. Consensus analysis based on seminorm is provided. Results give conditions for such systems with periodic switching topology and time-varying delays to reach consensus. Highlights of the paper include: the protocol can be implemented in a distributed manner; the pseudo predictive approach requires less computation and communication; the verification of consensus convergence does not require the global information about the communication topology; the protocol allows delay to be time-varying, topology to dynamically and asymmetrically switch and system mode to be unstable. Numerical and practical examples demonstrate the effectiveness of the theoretical results.  相似文献   

2.
This paper addresses the problem of bipartite output consensus of heterogeneous multi-agent systems over signed graphs. First, under the assumption that the sub-graph describing the communication topology among the agents is connected, a fully distributed protocol is provided to make the heterogeneous agents achieve bipartite output consensus. Then for the case that the topology graph has a directed spanning tree, a novel adaptive consensus protocol is designed, which also avoids using any global information. Each of these two protocols consists of a solution pair of the regulation equation and a homogeneous compensator. Numerical simulations show the effectiveness of the proposed approach.  相似文献   

3.
In this paper, we study the fixed-time consensus problem for multi-agent systems with structurally balanced signed graph. A new class of fixed-time nonlinear consensus protocols is designed by employing the neighbor’s information. By using Lyapunov stability method, states of all agents can be guaranteed to reach agreement in a fixed time under our presented protocols, and the consensus values are the same in modulus but different in sign. Moreover, it is shown that the settling time is not dependent on the initial conditions, and it makes a good convenience to estimate the convergence time by just knowing the graph topology and the information flow of the multi-agent systems. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed consensus protocols.  相似文献   

4.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

5.
In this paper, we design scale-free collaborative protocols for state and regulated state synchronization of homogeneous multi-agent systems (MAS) with arbitrary fast convergence. The protocol design solely depends on the knowledge of the agents’ model and does not require any information about the communication network and the number of agents. Moreover, our protocols can achieve synchronization with any desired convergence rate by simply tuning a design parameter.  相似文献   

6.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

7.
This paper considers distributed consensus problem of multi-agent systems consisting of general linear dynamics with a time-invariant communication topology. A distributed full-order observer type consensus protocol based on relative output measurements of neighbor agents is proposed. It is found that the consensus problem of linear multi-agent systems with a directed communication topology having a spanning tree can be solved if and only if all subsystems are asymptotically stable. Some necessary and sufficient conditions are obtained for ensuring consensus in multi-agent systems. The design technique is based on algebraic graph theory, Riccati inequality and linear control theory. Finally, simulation example is given to illustrate the effectiveness of the theoretical results.  相似文献   

8.
This paper focuses on the leaderless and leader-following consensus problems of second-order nonlinear multi-agents under directed graphs. Both leaderless and leader-following consensus protocols are proposed for multi-agents with unknown control directions based on the Nussbaum-type gains. For the leaderless case, the proposed protocol can guarantee that the consensus errors asymptotically converge to zero. Moreover, for the leader-following case, the Lyapunov stability analysis shows that the consensus tracking errors can be made arbitrarily small by tuning the control parameters. It should also be noted that these proposed protocols do not require any information about the global communication topology and work with only the relative information of neighboring agents. Illustrative examples are given to show the effectiveness of the proposed control protocols.  相似文献   

9.
This paper is concerned with event-triggered secure consensus for a class of linear multi-agent systems (MASs) under denial-of-service (DoS) attacks. Different from some existing methods, a multi-sensor multi-rate (MSMR) sampling mechanism is introduced to sample system states of agents. A class of multi-rate observer is devised to deal with some problems involved, such as the asynchrony and the incompleteness of several state sub-vectors, caused by the MSMR sampling mechanism. By using the partially updated state information of each agent, a novel multi-rate event-triggered mechanism is proposed, in which the continuous monitoring of the combined measurement information is avoided. Then, an event-based distributed secure consensus control protocol is presented against DoS attacks for the MAS under a directed communication topology. By taking into account the information on the duration and frequency of the DoS attacks, a sufficient condition is established to design suitable control protocols such that consensus can be achieved. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

10.
11.
This paper studies the problem of adaptive neural network (NN) output-feedback control for a group of uncertain nonlinear multi-agent systems (MASs) from the viewpoint of cooperative learning. It is assumed that all MASs have identical unknown nonlinear dynamic models but carry out different periodic control tasks, i.e., each agent system has its own periodic reference trajectory. By establishing a network topology among systems, we propose a new consensus-based distributed cooperative learning (DCL) law for the unknown weights of radial basis function (RBF) neural networks appearing in output-feedback control laws. The main advantage of such a learning scheme is that all estimated weights converge to a small neighborhood of the optimal value over the union of all system estimated state orbits. Thus, the learned NN weights have better generalization ability than those obtained by traditional NN learning laws. Our control approach also guarantees the convergence of tracking errors and the stability of closed-loop system. Under the assumption that the network topology is undirected and connected, we give a strict proof by verifying the cooperative persisting excitation condition of RBF regression vectors. This condition is defined in our recent work and plays a key role in analyzing the convergence of adaptive parameters. Finally, two simulation examples are provided to verify the effectiveness and advantages of the control scheme proposed in this paper.  相似文献   

12.
This paper presents a privacy-preserving average consensus algorithm for a discrete-time network with heterogeneous dynamic nodes in the presence of Gaussian privacy noises. Rényi divergence is used to measure the privacy, and a distributed algorithm is proposed for each node in the network to protect the initial output state and ensure consensus almost surely. The convergence rate of the proposed algorithm relates to the communication topology, dynamics of systems, and decaying rates of privacy noises. Moreover, by increasing neighbors of nodes in the network, the proposed algorithm can strengthen preservation. To demonstrate the theoretical results, a numerical example is carried out on a network of one hundred nodes.  相似文献   

13.
This paper investigates the problem of cooperative tracking for Lur’e systems under directed spanning tree topology. First, a control protocol is proposed to achieve cooperative tracking consensus by a distributed observer, which utilizes only the states of neighboring agents based on the event-triggering conditions with mixed node and edge. Then, an improved tracking protocol is developed by considering the case that only the outputs of neighbors can be obtained. With the aid of adaptive updating parameters, the two protocols do not utilize the minimum eigenvalue of Laplacian matrix, and can deal with the nonlinear dynamics of Lur’e systems in a fully distributed manner. Moreover, with the Lyapunov analysis framework, the tracking errors can be proved to converge to zero in both cases. Zeno behavior is excluded from the event-triggering conditions containing states and outputs of neighbors. Finally, the effectiveness of the proposed protocols is verified by two numerical simulations.  相似文献   

14.
In this paper, both leaderless and leader-follower consensus problems for a class of disturbed second-order multi-agent systems are studied. Based on integral sliding-mode control, sliding-mode consensus protocols are proposed for leaderless and leader-follower multi-agent systems with disturbances, respectively. Firstly, for leaderless second-order multi-agent systems, a sliding-mode consensus protocol is proposed to make the agents achieve asymptotic consensus. Secondly, for leader-follower second-order multi-agent systems, a finite-time sliding-mode consensus protocol is designed to make the agents achieve consensus in finite time. Both kinds of consensus protocols inherit the anti-disturbance performance and robustness of sliding-mode control and require less communication information. Finally, two numerical simulations are given for leaderless and leader-follower second-order multi-agent systems to validate the efficiency of the proposed consensus protocols.  相似文献   

15.
This study investigates the consensus tracking problem for unknown multi-agent systems (MASs) with time-varying communication topology by using the methods of data-driven control and model predictive control. Under the proposed distributed iterative protocol, sufficient conditions for reducing tracking error are analyzed for both time invariable and time varying desired trajectories. The main feature of the proposed protocol is that the dynamics of the multi-agent systems are not required to be known and only local input-output data are utilized for each agent. Numerical simulations are presented to illustrate the effectiveness of the derived consensus conditions.  相似文献   

16.
The design of fixed-time scaled consensus protocol for multi-agent systems with input delay is developed in this article. First, by virtue of Artstein model reduction method, the time-delay system is converted into a delay-free one. Then, two novel controllers are designed such that the fixed-time scaled consensus of multi-agent systems can be realized for the undirected and directed topology, respectively. Sufficient conditions are derived to guarantee that all agents converge to the assigned ratios instead of the same value under any bounded input delay. Besides, an explicit estimate can be given for the uniform convergence time independent of the initial conditions. Moreover, it is proved that the convergence value of the system is not affected by the initial states of agents any more, but only related to initial states of the virtual agents set in advance. Finally, numerical simulations are given to demonstrate the feasibility of the proposed algorithms.  相似文献   

17.
18.
In this paper, a consensus framework is proposed for a class of linear multiagent systems subject to matched and unmatched uncertainties in an undirected topology. A linear coordinate transformation is derived so that the consensus protocol design can be conveniently performed. The distributed consensus protocol is developed by using an integral sliding mode strategy. Consensus is achieved asymptotically and all subsystem states are bounded. By using an integral sliding mode control, the subsystems lie on the sliding surface from the initial time, which avoids any sensitivity to uncertainties during the reaching phase. By use of an appropriate projection matrix, the size of the equivalent control required to maintain sliding is reduced which reduces the conservatism of the design. MATLAB simulations validate the effectiveness and superiority of the proposed method.  相似文献   

19.
In this paper, a distributed consensus algorithm for multi-mobile robot systems (MMRSs) with communication delays is proposed based on the Udwadia-Kalaba (UK) approach. The key feature of the proposed algorithm is that the consensus requirement is configured as a second-order constraint, and then a concise and explicit equation of motion for the constrained mechanical systems is formulated. Furthermore, the necessary and sufficient conditions for achieving the consensus of MMRSs with or without communication delays are developed under the network topology possessing a directed spanning tree. Finally, some numerical simulations are performed to verify the validity of the proposed consensus algorithm.  相似文献   

20.
The problem of finite-time consensus of linear multi-agent systems subject to input saturation is investigated and two control protocols are presented for leaderless and leader-following cases, respectively. The leaderless multi-agent systems with proposed non-smooth protocol can achieve consensus in finite time. The consensus protocol designed for leader-following case with directed topology can solve the finite-time consensus problem, where a priori constraint is adopted to deal with input saturation. Furthermore, the settling time is explicitly derived using finite-time Lyapunov theory. Finally, the effectiveness of the theoretical results is illustrated with several numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号