首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文给出不等式x/(1 x xy) y/(1 y yz) z/(1 z zx)≤1(其中x,y,z∈R_ )的一种最简单的证法。这种证法只需引用不等式(a b c)(1/a 1/b 1/c)≥9 (*)其中a,b,c∈R~ 。 令a=x/(1 x xy),b=y/(1 y yz),c=z/(1 z zx)易知 1/a 1/b 1/c=1/x 1 y 1/y 1 z 1/z 1 x=3 (x 1/x) (y 1/y) (z 1/z)≥3 2 2 2=9,当且仅当x=y  相似文献   

2.
从许多参考书上,可以看到如下一个重要不等式: 若a,b,c∈R~ ,则 2/(a b) 2/(b c) 2/(c a)≥9/(a b c)(1) 此不等式呈轮换对称形式,排列整齐,而且  相似文献   

3.
一类三元分式不等式及其证明   总被引:1,自引:1,他引:0  
本文旨在介绍几个新颖有趣的三元分式不等式,并给出它们的巧妙证明.例1已知a,b,c为满足abc=1的正数,求证:1/(2 a) 1/(2 b) 1/(2 c)≤1.证明:因bc ca ab≥3(abc)~(1/3)=3,故1-(1/(2 a) 1/(2 b) 1/(2 c)) =1-(bc ca ab 4(a b c) 12)/((2 a)(2 b)(2 c))  相似文献   

4.
文[1]给出了一对非常优美的姐妹不等式设a,b,c是正数,且a+b+c=1,则有(1/(b+c)-a)(1/(c+a)-b)(1/(a+b)-c)≥(7/6)~3(1)当且仅当a=b=c=1/3时取等号,  相似文献   

5.
,作者华强.本文介绍了两个对证明和推广对称不等式有用的命题,把第28届 IMO 的一道预选题“证明;若 a,b,c 为三角形的边长,a b c=2s.那么 a~n/(b c) b~N/(c a) c~n/(a b)≥(2/3)~(u-1)s~(n-1)(n≥1)”推广到一般形式,并给出一个处理对称形不等式较为通用的方法.  相似文献   

6.
1963年,一道经典的不等式题在莫斯科数学竞赛中应运而生,原题如下:设 a,b,c∈R+,求证:a/(b+c)+b/(c+a)+c/(a+b)≥3/2.①这个不等式的证法很多,下面笔者给出两个最简单的证明过程.证法1:要证原不等式成立,只须证 a/(b+c)+1+b/(c+a)+1+c/(a+b)+1≥9/2,即只须证[2(a+b+c)](1/(b+d)+1/(c+a)+1/(a+b))≥9,由柯西不等式易知上式显然成立,所以原不等式  相似文献   

7.
题目设a,b,c是正实数,且a+b+c=1,则有(1/(b+c)-a)(1/(c+a)-b)(1/(a+b)-c)≥(7/6)~3(1)当且仅当a=b=c=了1时取到等号.文[1][2]给出了不同的证明方法,本文再给出更简单的证明方法.证明:注意到b~2-b+1=(b-1/3)~2+1/9(8-3b)≥1/9(8-3b),同理有c~2-c+1≥1/9(8-3c),  相似文献   

8.
正引言文[1]—[4]研究了如下几个有意思的不等式:问题1已知a,b,c为正实数,求证:(a2+b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b).问题2已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+b-c)(b+c-a))c+a-b).问题3若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

9.
文[1]-[4]研究了如下几个有意思的不等式: 问题1:已知a,b,c为正实数,求证:(a2+ b2)2≥(a+b+c)(a+b-c)(b+c-a)(c+a-b) 问题2:已知a,b,c为正实数,求证:(ab)2≥1/4(a+b+c)(a+ b-c)(b+c-a)(c+a-b) 问题3:若a,b,c为正实数,且满足a+b+c=3,求证:(3/a-2)(3/b-2)(3/c-2)≤1.  相似文献   

10.
1、问题提出 安振平老师在文[1]中利用抽屉原理得到了如下不等式:对于任意的正实数a,b,c,均有(a2+2)(b2+2)(c2+2)≥3(a+b+c)2.得到此不等式后,安老师指出由此不等式及(a+b+c)2≥3(ab+bc+ca),立得2004年亚太地区数学竞赛中的一道题:对于任意的正实数a,b,c,均有(a2 +2)(b2+2)(c2+2)≥9(ab+bc+ca).  相似文献   

11.
命题 设△ABC的三边长分别为a、b、c,旁切圆半径分别为r_a、r_b、r-c.则 (a/(r_a))~n (b/(r_b))~n (c/(r_c))~n≥2~n·3~(1-n/2)(n>0). (1) 证明:由算术—几何平均值不等式得  相似文献   

12.
有关证明条件等式的代数题,是一类综合性比较强的题目,如果能让学生掌握其各种不同的证明方法,对于培养他们的逻辑思维能力和熟练的技能技巧都是大有益处的。下面介绍几种证明条件等式的常用方法。一、将已知条件直接代入欲证等式例1 已知:x=(a-b)/(a b),y=(b-c)/(b c), z=(c-a)/(c a) 求证:(1 x)(1 y)(1 z) =(1-x)(1-y)(1-z) 证明:∵(1 x)(1 y)(1 z) =(1 (a-b)/(a b))(1 (b-c)/(b c))(1 (c-a)/(c a)) =2a/(a b)·2b/(b c)·2c/(c a) (1-x)(1-y)(1-z) =(1-(a-b)/(a b))(1-(b-c)/(b c))(1-(c-a)/(c a)) =2b/(a b)·2c/(b c)·2a/(c a) ∴ (1 x)(1 y)(1 z)=(1-x)(1-y)(1-z) 二、通过已知条件之间的相互变换,得出求证式。例2.设x=by cz,y=cz ax,z=ax by 试证:(a 1)x=(b 1)y=(c 1)z  相似文献   

13.
文[*]给出欧拉(Euler)不等式的一个加强R≥2r/9(a b c)(1/a 1/b 1/c),①其中a、b、c表示三角形三边长,当且仅当三角形为正三角形时等号成立.  相似文献   

14.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

15.
不等式a b≥2(ab)~(1/2)是中学数学中一个用得很广的基本不等式,但在应用中常见一些错误,现举几例. 一、忽视了a b≥2(ab)~(1/2)成立条件而导致的错误例1 设a、b、c为正数,求证(a b c)~3≥27(a b-c)(b c-a)(c a-b) 错误证法: ∵a b c=(a b-c) (b c-a) (c a-b)>0 ∴(a b-c) (b c-a) (c a-b)≥3((a b-c)(b c-a)(c a-b))~(1/2) 即(a b c)~3≥27(a b-c)(b c-a)(c a-b) 分析:虽a>0,b>0,c>0,但a b-c,b c-a,c a-b不一定都大于0,而x y z≥3(xyz)~(1/2)的中x、y、z必须都大于0.  相似文献   

16.
设a,b,c∈R~ ,求证:(a~2 b~2)~(1/2) (b~2 c~2)~(1/2) (c~2 a~2)~(1/2)≥2~(1/2)(a b c)。此不等式多用代数方法或构造复数来证明,但李建章老师在《中学生教学》上给出了上述不等式的一种几何证明,读后颇有启发。本文打算提供另一种直观的几何证明,供参考。证明:如图,构作一边长为a b c的正方形ABCD,其对角线长AC=2~(1/2)(a b  相似文献   

17.
取ΔABC的某一边b为底边,其对角B为顶角,其两腰a,c之和为P,两腰a,c之差的绝对值为2x,则有P>b>2x≥0。由余弦定理可推出不等式: b/(a c)=b/P≥sinB/2。(等号仅当a=c,即x=0时才取)。推证过程如下: b~2=a~2 c~2-2cacosB =(a c)~2-2ca(1 cosB) =P~2-2(P/2(?)x)(P/2±x)(1 cosB) =P~2-2(P~2/4-x~2)(1 cosB)  相似文献   

18.
1.问题试题(2013年湖南卷理科第10题)设a,b,c∈R,且满足a+2b+3c=6,则a^2+4b^2+9c^2的最小值为______.2.问题解决视角1柯西不等式法解法1:由柯西不等式得(a+2b+3c)^2=(1×a+1×2b+1×3c)^2≤(1^2+1^2+1^2)(a^2+4b^2+9c^2)=3(a^2+4b^2+9c^2),即a^2+4b^2+9c^2≥12,当且仅当a=2,b=1,c=2/3时等号成立.  相似文献   

19.
题目 已知a,b,c∈R,a+2b+3c=6,则a2+ 4b2+ 9c2的最小值为____. 解法1 由柯西不等式得(a2 +4b2+ 9c2)(12+12+ 12)≥(a+2b+3c)2, 所以3(a2+ 4b2+ 9c2)≥36, 所以a2+ 4b2+ 9c2≥12,当a/1=2b/1=3c/1且a+2b+3c=6,即a=2,b=l,c=2/3时取得最小值.  相似文献   

20.
文[1]用高等数学方法证明了如下一个加强不等式,即命题1设a,b,c均为正数,且abc=1,若λ≤9,则1/a+1/b+1/c+λ/(a+b+c)≥3+λ/3.笔者发现这个不等式并不成立,反例如下:当a=b=2/3,c=9/4,λ=9时,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号