首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Numerical analysis of dynamic behavior of RC slabs under blast loading   总被引:2,自引:0,他引:2  
In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.  相似文献   

2.
Current practice in analysis and design of blast doors subjected to blast loading considers only simple boundary conditions and material properties. The boundary conditions and material properties, in fact, have considerable influence on the response of blast doors subjected to blast loading. In this paper, the dynamic responses of a reinforced concrete arched blast door under blast loading were analyzed by the finite element program ABAQUS, combined with a previously developed elasto-viscoplastic rate-sensitive material model. And the effect of the surrounding rock mass and contact effect of the doorframe were also taken into account in the simulation. It is demonstrated that the strain-rate effect has considerable influence on the response of reinforced concrete blast door subjected to blast loading and must be taken into account in the analysis.  相似文献   

3.
In order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast loadings,the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures,and all three failure modes were numerically simulated by the finite element software ABAQUS.Simulation results agree with the experimental observations.It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure,flexure-shear and direct shear failure modes of the blast-loaded RC structures.  相似文献   

4.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out-in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

5.
In the present paper, a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading. The interaction between the blast wave and the concrete slab is considered in 3D simulation. In the first stage, the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab, then the results obtained from 2D calculation are remapped to a 3D model. The calculated blast load is compared with that obtained from TM5-1300. Numerical results of the concrete slab response are compared with the explosive test carried out- in the Weapons System Division, Defence Science and Technology Organisation, Department of Defence, Australia.  相似文献   

6.
Retrofitting of RC Slabs Against Explosive Loads   总被引:1,自引:0,他引:1  
With the increase of terrorist bomb attacks on buildings, there is a need to develop advanced retrofitting techniques to strengthen structures against blast loads. Currently, several guidelines including an Australian version for retrofitting reinforced concrete (RC) structures are available for the design of retrofitting systems against seismic and monotonic loads using steel or fibre reinforced polymer (FRP) plates that can be either adhesively bonded to the surface or near surface mounted to the concrete cover. However, none of these guidelines provide advice suitable for retrofitting structures subjected to blast loads. In this paper, numerical models are used to simulate the performance of retrofitted RC slabs subjected to blast loads. Airblast pressure distributions on the surface of the slabs estimated in a previous study are used as input in the analysis. A material damage model developed previously for concrete and an elastoplastic model for steel bars are employed in this research for modelling reinforced concrete behaviour due to explosive loads. The material models and blast loading are coded into a finite element computer program LS-DYNA3D to do the analysis. With the numerical model, parametric studies are conducted to investigate RC slabs retrofitted by either externally bonded or near-surface mounted plates or GFRP sheets subjected to blast loads. Discussion is made on the effectiveness of the retrofitting system for RC slabs against blast loads.  相似文献   

7.
Current guidelines recommend using single-degree-of-freedom(SDOF) method for dynamic analysis of reinforced concretec (RC) structures against blast loads, which is not suitable for retrofitted members. Thus, a finite difference procedure developed in another study was used to accurately and efficiently analyze the dynamic response of fibre reinforced polymer (FRP) plated members under blast loads. It can accommodate changes in the mechanical properties of a member's cross section along its length and through its depth in each time step, making it possible to directly incorporate both strain rate effects (which will vary along the length and depth of a member) and non-uniform member loading to solve the partial differential equation of motion. The accuracy of the proposed method was validated in part using data from field blast testing. The finite difference procedure is implemented easily and enables accurate predictions of FRP-plated-member response.  相似文献   

8.
The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete. This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA. In the numerical model, a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation. An erosion technique is adopted to model the spalling process of concrete. The possible failure modes of SRC columns are evaluated. It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes, namely, a direct failure in concrete body due to the stress wave, a transverse shear failure near the support sections due to the high shear force, and a flexural failure pertaining to large local and global deformation of the reinforcing steel.  相似文献   

9.
本文通过转换梁及其下部柱中设与不设型钢骨架两种方案托柱式底层大空间转换层结构模型的对比试验,系统研究了其在垂直荷载和水平荷载作用下的受力性能、位移延性和破坏机制等.结果表明:型钢混凝土转换梁结构具有良好的受力及抗震性能,并提出了有关设计建议.  相似文献   

10.
矿渣微粉对混凝土性能影响的试验研究   总被引:2,自引:0,他引:2  
通过试验,利用不同细度、不同掺量的矿渣微粉等量置换混凝土中的水泥,研究混凝土性能变化趋势,以期达到优化矿渣微粉应用参数和使用效果的目的。试验结果表明:在配制C40混凝土时,矿渣细度控制在500m^2/kg左右,掺量20%∽60%时,混凝土的工作性和力学性能均得到较好的发挥。  相似文献   

11.
In this study, two full-size concrete walls were tested and analyzed to demonstrate the effectiveness of a chemically reactive enamel (CRE) coating in improving their mechanical behavior under blast loading: one with CRE-coated rebar and the other with uncoated rebar. Each wall was subjected in sequence to four explosive loads with equivalent 2, 4, 6-trinitrotoluene (TNT) charge weights of 1.82, 4.54, 13.6, and 20.4 kg. A finite element model of each wall under a close-in blast load was developed and validated with pressure and strain measurements, and used to predict rebar stresses and concrete surface strain distributions of the wall. The test results and visual inspections consistently indicated that, compared with the barrier wall with uncoated reinforcement, the wall with CRE-coated rebar has fewer concrete cracks on the front and back faces, more effective stress transfers from concrete to steel rebar, and stronger connections with its concrete base. The concrete surface strain distributions predicted by the model under various loading conditions are in good agreement with the crack patterns observed during the tests.  相似文献   

12.
In order to design and retrofit a subway station to resist an internal blast,the distribution of blast loading and its effects on structures should be investigated firstly.In this paper,the behavior of a typical subway station subjected to different internal blast Ioadings was analyzed.It briefly introduced the geometric characteristics and material constitutive model of an existing two-layer and three-span frame subway station.Then three cases of different explosive charges were considered to analyze the dynamic responses of the structure.Finally,the maximum principal stress,displacement and velocity of the columns in the three cases were obtained and discussed.It concluded that the responses of the columns are sensitive to the charge of explosive and the distance from the detonation.It's also found that the stairs between the two layers have significant effects on the distribution of the maximum principal stress of the columns in the upper layer.The explicit dynamic nonlinear finite element software-ANSYS/LS-DYNA was used in this study.  相似文献   

13.
Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 20% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of 7 to 3 under the condition in this paper when the total thickness of soft layer remains constant.  相似文献   

14.
探讨钢筋混凝土T形柱最不利荷载角及其影响因素.利用编制的钢筋混凝土异形柱截面全过程数值分析程序,通过对多种工况下钢筋混凝土异形柱正截面承载力的计算分析,结果表明异形柱最不利荷载角的影响因素主要是轴压比;截面尺寸对最不利荷载角有些影响;而混凝土强度、纵筋配筋面积对最不利荷载角的影响很弱.研究结果为钢筋混凝土异形柱的设计和异形柱的可靠性分析提供参考依据.  相似文献   

15.
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.  相似文献   

16.
This paper discusses the collapse mode of thin reinforced concrete (RC) plates sub-jected to blast load. To extend the well known plastic-mode method to analyze, not only perfect-plastic plates , but also RC plates, it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops, creating an unexpected type of collapse mode shape. A new fail-ure mode is proposed and verified by numerical analysis in this paper. The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load.  相似文献   

17.
This paper discusses the collapse mode of thin reinforced concrete (RC) plates subjected to blast load.To extend the well known plastic-mode method to analyze,not only perfectplastic plates,but also RC plates,it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops,creating an unexpected type of collapse mode shape.A new failure mode is proposed and verified by numerical analysis in this paper.The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load.  相似文献   

18.
Numerical Modeling of Response and Damage of Masonry Walls to Blast Loading   总被引:1,自引:0,他引:1  
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

19.
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.  相似文献   

20.
Under extreme loading condition,a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materi-als,a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was ex-perimentally investigated.A single storey shelter based on the proposed design concept was nu-merically simulated by using LS-DYNA software.In the 3D numerical model,three walls were de-signed using I-section steel and one wall using C-channel steel,and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号