首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

2.
在涉及反函数的一些问题中 ,有时不求反函数 ,反而可以更准确更快捷地解题 .一、求值例 1 若f(x) =3x-4 ,则f- 1 ( 2 ) =.解 设f- 1 ( 2 ) =a ,则f(a) =2 ,即3a-4 =2 ,a=2 ,∴f- 1 ( 2 ) =2 .例 2 已知f(x) =x2 (x≥ 1) ,又f- 1 (m)= 4,则m =.分析 ∵f- 1 (m) =4,∴f( 4 ) =m ,∴m =42 =16.例 3 若f(x) =3x2 +2 (x ≥ 0 ) ,则f- 1 [f( 2 ) ] = .分析 应用结论 :若函数y=f(x) (x∈A ,y∈C)存在反函数y =f- 1 (x) ,则f[f- 1 (x) ] =x(x∈C) ,f- 1 [f(x) ] =x(x∈A) .由上易知f- 1 …  相似文献   

3.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

4.
不等式中恒成立问题是各类考试中的常见题型,其解法灵活.那么,如何求解呢?下面通过例题加以说明.一、分离参数,转化为求函数的最值例1 设f(x)是定义在(-∞,3]上的减函数,已知f(a2-sinx)≤f(a+1+cos2x)对于x∈R恒成立,求实数a的取值范围.分析:应在定义域和增减性的条件下去掉函数符号f,使a从f中解脱出来.解:原不等式等价于a+1+cos2x≤a2-sinx≤3对x∈R恒成立,即        a2≤3+sinx,a2-a≥1+cos2x+sinx①②对x∈R恒成立.令t(x)=3+sinx,则①对x∈R恒成令s(x)=1+cos2x…  相似文献   

5.
在函数的性质中 ,周期性占有特殊地位 .本文给出几个在对称条件下函数周期性的一些判定方法及其应用例举 .结论 1 如果一个函数的图象有两条对称轴x=a与x =b,那么这个函数一定是周期函数 .具体地说 ,若函数 y=f(x) ,对于定义域R上的任何x ,都有 f(x) =f( 2a-x) ,f(x) =f( 2b -x) (a≠b) ,则函数 f(x)是周期函数 ,且 2|a-b|为其一个正周期 .证明 对于任一x∈R ,都有f[2 (b-a) +x]=f( 2b-2a +x)=f( 2a-x) =f(x) ,∴y=f(x)是一个周期函数 ,2|a-b|为其一个正周期 .根据结论 1 ,若函数 f(x…  相似文献   

6.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

7.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

8.
在 2 0 0 2年上海高考题中有这样一道试题 :已知函数 f(x) =x2 +2x·tanθ-1 ,x∈ [-1 ,3 ],其中θ∈ -π2 ,π2 .( 1 )当θ=-π6时 ,求函数 f(x)的最大值与最小值 ;( 2 )求θ的取值范围 ,使 y =f(x)在[-1 ,3 ]上是单调函数 .该题以学生熟知的二次函数知识为载体 ,考查最值和单调函数的掌握情况 .解  ( 1 )当θ=-π6时 ,f(x) =x2 -2 33 x-1=x-332 -43 ,∴x=33 时 ,f(x)的最小值为 -43 .x=-1时 ,f(x)的最大值为2 33 .( 2 )函数 f(x) =(x+tanθ) 2 -1 -tan2 θ图象的对称轴为x =-tanθ,∵y =f(x)在…  相似文献   

9.
例 1 已知函数 f(x) =1x2 + (a - 4 )x + 4 - 2a,若a∈ [- 1,1],则 f(x)的定义域为 (   ) .A .( 1,3)  B .( -∞ ,1)∪ ( 3,+∞ )  C .( 1,2 )  D .( -∞ ,1)∪ ( 2 ,+∞ )解 :原命题可等价转化为 :若a∈ [- 1,1],求x的取值范围 ,使x2 + (a - 4 )x +4 - 2a >0恒成立 .这样不妨令函数T(a) =(x - 2 )a +x2 - 4x + 4 .由题意可知 T( 1) >0 ,T( - 1) >0 ,即 x2 - 3x + 2 >0 ,x2 - 5x + 6 >0 .x∈ ( -∞ ,1)∪ ( 3,+∞ ) ,故选B .分析 :上面错解在一些师生中广为流传 ,因此有必要予以纠正 .求含参数的…  相似文献   

10.
20 0 2年高考有一道数学题为 :已知a >0 ,函数 f(x) =ax -bx2 .(1)当b >0时 ,若对任意x∈R ,都有f(x) ≤ 1,证明 :a≤ 2b ;(2 )当b >1时 ,证明 :对任意x∈ [0 ,1],|f(x)|≤ 1的充要条件是b- 1≤a≤ 2 b ;(3)当 0 <b≤ 1时 ,讨论 :对任意x∈[0 ,1],|f(x)|≤ 1的充要条件 .绝大多数考生做此题时无所适从 ,根本不知从何下手 ,参考答案给出的方法比较抽象 ,难于理解 ,笔者有一解法 ,介绍如下 :解  (1)由已知ax -bx2 ≤ 1,∴ bx2 -ax +1≥ 0 .∵ x∈R ,b >0 ,∴ Δ =a2 - 4b≤ 0 ,∴ a≤ 2 b .…  相似文献   

11.
分母有理化是代数恒等变换的一种手段 ,其实 ,分子有理化在许多问题中也有着独特的作用 .例 1 设函数f(x) =loga(x2 +1+x) ,判断f(x)在实数R上的奇偶性 .解 f(x)的定义域关于原点对称 .f( -x) =loga(x2 +1-x)=loga(x2 +1-x) (x2 +1+x)x2 +1+x=loga1x2 +1+x=-f(x) .∴f(x)为奇函数 .例 2 设p=a+3 +a+7,Q =2a +5 (a >-3 ) ,试比较P、Q的大小 .解 ∵a+7-a+5    =2a +7+a +5 ,a +5 -a +3= 2a+5 +a+3 ,又∵a+7+a+5 >  a +5 +a +3 ,∴a +7-a +5 < a+5 -a+3 .∴P>Q …  相似文献   

12.
函数是贯穿于初等数学的一根主线 ,函数思想是数学思想方法的重要组成部分 .函数思想的实质是剔除问题的非数学特征 ,用联系变化的观点提出数学对象 ,抽象其数量特征 ,建立函数关系 .下列举例说明函数思想在解题中的重要性和广泛的应用性 .例 1 设a、b、c∈R ,且a2 ≤ 1 ,b2 ≤ 1 ,c2 ≤ 1 .求证 :ab bc ca 1≥ 0证明 :构造一次函数f(x) =(a c)x ca 1若a c=0 ,由于-1 ≤ac≤ 1 ,有ac 1≥ 0 .即f(x) ≥ 0若a c≠ 0 ,f(1 ) =a c ca 1=(1 a) (1 c) ≥ 0 .f(-1 ) =-(a c) ca 1 =(1 -a)…  相似文献   

13.
题 设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .解  f′(x) =12x- 1x +a =x- 2 x+a2x(x+a) ,因为a>0 ,x >0 ,所以 2 x >0 ,x +a >0 .所以f′(x)与x - 2 x+a同号 ,令t =x ,则x- 2 x+a =(t- 1) 2 + (a - 1)(ⅰ )当a >1时 ,f′(x) >0 ,所以 f(x)在 ( 0 ,+∞ )单调递增 ;(ⅱ )当a =1时 ,f′(x)≥ 0 ,且只在x =1处f′(x) =0 ,所以 f(x)在 ( 0 ,+∞ )单调递增 ;(ⅲ )当 0 <a <1时 ,令 (t- 1) 2 + (a - 1) =0得t =1± 1-a ,此时x =t2 =2 -a± 2 1-a ,显然当t∈ (…  相似文献   

14.
本文例举几种忽视函数定义域导致解题错误的实例并加以剖析 .例 1 已知函数f(x) =2 log3 x ,x∈〔1,9〕 ,求函数g(x) =〔f(x)〕2 f(x2 )的最大值和最小值 .错解 ∵f(x) =2 log3 x ,∴g(x) =〔f(x)〕2 f(x2 )=( 2 log3 x) 2 2 log3 x2 =log23 x 6log3 x 6=(log3 x 3) 2 - 3 .∵x∈〔1,9〕 ,∴log3 x∈〔0 ,2〕 ,当log3 x =0时 ,g(x) min=6;当log3 x =2时 ,g(x) max=2 2 .剖析 上面的解题错误地认为 f(x)的定义域即为 g(x)的定义域 ,事实上 g(x)的定…  相似文献   

15.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

16.
特例法作为高考数学中简捷、快速的解题方法 ,是根据题意选取特殊的例子 (如特殊值、特殊函数、特殊角、特殊点、特殊数列等 ) ,从而得出正确答案 .那么在什么情况下可用此法 ?下面举例说明 ,供参考 .一、“恒成立型”问题当所给的命题对于在实数集R(或某区间 )上恒成立 ,求命题中的参数等问题 ,可考虑使用取特殊值法 .例 1  (2 0 0 1年全国高考题 )设f(x)是定义在R上的偶函数 ,其图像关于直线x=1对称 ,对任意x1,x2 ∈ [0 ,12 ],都有f(x1 x2 ) =f(x1)·f(x2 ) ,且f(1 ) =a >0 ,求f(12 )及f(14) .分析 此题是x1,x2 “…  相似文献   

17.
题目 已知函数y =f(x) =log2 〔2 ( 3a - 2 )x2 4ax a 1〕的值域为 ( -∞ , ∞ ) ,试求实数a的取值范围 .误解 函数 f(x)的值域为 ( -∞ , ∞ ) ,∴ 2 ( 3a - 2 )x2 4ax a 1>0恒成立 ,于是有2 ( 3a - 2 ) >0 ,( 1)Δ =16a2 - 8( 3a - 2 ) (a 1) <0 . ( 2 )由 ( 1)得a >23,由 ( 2 )得a <- 2或a >1,∴a >1.因此 ,所求a的取值范围为a >1.这个解答的错误是容易断定的 .例如 ,令a =2 ,则a∈ ( 1, ∞ ) .这时 ,y =log2 ( 8x2 8x 3) =log2 8x 122 1.由于 8x 122 1≥ 1,所以y的…  相似文献   

18.
欢迎您—2003     
一年一度的佳节———元旦 ,就要来临了 ,为了欢度节日 ,特为数学爱好者 ,提供一组结果均为 2 0 0 3的函数趣题以资助乐 .1 设对于函数 :f(x) =x +3x - 2 ,g(x) =ax +bx +c ,且有 f[g(x) ] =2 0 0 6x +42 0 0 1x - 1,试求a、b、c之值 .解 由题目条件得 :f[g(x) ] =g(x) +3g(x) - 2=ax +bx +c +3ax +bx +c - 2=(a +3)x +(b +3c)(a - 2 )x +(b - 2c) .由题设知(a +3)x +(b +3c)(a - 2 )x +(b - 2c) =2 0 0 6x +42 0 0 1x - 1,整理得 :( 5a - 10 0 15)x2 +( 5a +5b - 10 0 15c- …  相似文献   

19.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

20.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号