首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
优化纤维素降解菌株CY10产酶条件,为该菌株在纤维素的生物降解方面提供实验依据.通过单因素试验对CY10菌株产酶条件进行优化,依据纤维素酶(CMCase)和滤纸糖化酶(FPase)活力大小确定最适培养时间、初始p H、碳源、氮源、温度、接种量及装液量等.结果表明:菌株CY10产酶的最适初始p H为6.5,碳源为麦麸(2.0%),氮源为酵母粉(0.5%),在30℃培养42 h;该菌株所产CMC酶和滤纸酶的酶活性最适温度为45℃,最适p H为6.5.在此条件下,CY10菌株的CMCase和FPase活力分别达到21.26 U/m L和23.57 U/m L.为此,菌株CY10在纤维素的生物降解方面具有较好的应用前景.  相似文献   

2.
为了获得高产纤维素酶菌株,有效地开发和利用纤维素资源.本研究通过对野外采集的大型真菌进行分离纯化,获得了16个菌株.利用CMC固体培养、刚果红染色,测量水解圈与菌落直径的比值(H/C值),对获得的菌株进行初筛;通过液体发酵培养,测定其上清液中的滤纸酶活力(FPA),对菌株进行复筛,最终获得了纤维素酶活性较高的菌株01.以稻草和羧甲基纤维素为碳源,研究了培养温度、pH值、培养时间对真菌菌株01产纤维素酶的影响.结果表明,该菌株产纤维素酶的最适培养温度为27℃,pH值为5.0,培养时间为6 d,菌株01的滤纸酶活性达到580.0 IU/mL.因此,真菌01可作为纤维素酶研究和饲料加工等生产的备选菌株.  相似文献   

3.
《河西学院学报》2017,(2):73-80
根据微生物间的拮抗现象对25株荷叶离褶伞菌株进行筛选,得到1022、1286、1116、1110、07-2、07-1、3001和R132亲缘关系不同的菌株8个,并对这8个菌株最适温度进行研究以及在最适温度下菌丝生长量、胞外淀粉酶(Amylase)、羧甲基纤维素酶(CMCase)和漆酶(Laccase)活性变化进行监测.结果表明,不同菌株的胞外酶活性变化规律基本一致,其中菌株R132具有较高的漆酶和纤维素酶活性,菌株1110具有较高的淀粉酶和漆酶活性,菌株07-1具有较高的淀粉酶和纤维素酶活性,同时这三个菌株也具有较高的菌丝生长量;而三种酶活性在菌株1022中活性均较低;本研究结果为荷叶离褶伞高产菌株的选育提供依据.  相似文献   

4.
从废弃菌包中分离得到的11株菌株通过固体培养初筛和摇瓶发酵复筛,筛选出纤维素酶活性较高的2株菌株,分别记为f-6和f-10菌株。f-6菌株的Cx酶活力最高,作用于可溶性纤维素的效率最高;f-10菌株的复合酶活力最高,作用于不溶性纤维素的效率最高。在实际应用中,作用于可溶性的纤维素应该考虑选用菌株f-6,作用于不溶性的纤维素则考虑选用菌株f-10。  相似文献   

5.
目的:研究纤维素分解菌的分离及产酶条件优化.方法:以含菌秸秆、腐木叶和玉米地土壤为原料,经富集、初筛培养后,根据水解圈直径/培养天数进行纤维素分解菌的复筛培养,测定CMC酶活和FPA滤纸酶活,并进行了产酶条件的单因素优化实验.结果:采集的样品中共分离到4个菌株,均为细菌,其中H-3的羧甲基纤维素(CMC)酶活和滤纸(FPA)酶活最高,分别是0.5401U.m l-1、0.2923U.m l-1.结论:H-3菌分解纤维素的能力最强,最佳产酶条件为温度30℃,pH4.5.不含尿素,葡萄糖和纤维素含量为0.4%和0.6%.  相似文献   

6.
以麦糠纤维素为碳源,从造纸厂污水治理产生的废弃物——黑泥中分离出9株能分解纤维素的菌株。分别对其进行了滤纸分解度、羧甲基纤维素酶活力、天然纤维素酶活力、不同温度对纤维素分解菌酶活力的影响等方面的测定。结果表明:W-07菌株对滤纸的分解能力最强,不到14h滤纸全成糊状;同时羧甲基纤维素酶活力、滤纸糖化力和天然纤维素酶活力也最高,且在55℃的条件下具有最高的酶活力。将该菌种经扩大培养后应用到有机肥生产中,不但能减少黑泥对环境的再污染,同时产生了良好的经济效益。  相似文献   

7.
为了对筛选得到的1株纤维素分解菌进行鉴定,并研究其对废弃秸秆资源的降解效果.本文通过羧甲基纤维素钠(CMC)固体培养初筛和复筛,从土壤中获得了1株酶活力较高的菌株,并对其进行不同碳源酶活力的初步研究.利用PCR法,结合18S rDNA的序列分析鉴定该菌株为产黄青霉菌,将该菌株接种到不同碳源的发酵培养基中,30℃培养48 h后测定酶活,发现该菌株不到12 h对滤纸完全崩解;15 d内对小麦秸秆分解迅速.同时测得羧甲基纤维素酶活力、滤纸糖化力和小麦秸秆纤维素分解能力分别为:4.653 U/m L、5.445 U/m L和6.876 U/m L.  相似文献   

8.
<正>影响酶活性的因素主要有温度和pH,为此我们可以探究酶的最适温度和最适pH。一、在探究影响酶活性的因素实验中要做到"五不宜"1.探究酶的最适温度实验时,不宜选用过氧化氢酶催化H_2O_2的分解,因为过氧化氢在加热的条件下分解会更快。2.探究酶的最适pH实验时,由于酸对淀  相似文献   

9.
本文主要阐述了产溶栓酶纳豆菌的筛选、鉴定及最适固态发酵条件的初步研究。采用纤维蛋白平板法在经初筛获得 1 5株产溶栓酶菌株基础上 ,经复筛确定一产酶活力最高菌株 -B .N .1 0 ,并对该菌株部分生物学特性进行了研究 ,以B .N .1 0菌株进行固态发酵 ,其产酶最适温度、时间分别为 30℃和 2 4h  相似文献   

10.
利用选择性培养基从土壤中分离具有产壳聚糖酶能力的菌株,获得两株产壳聚糖酶菌株,对其中的一株非芽孢杆菌Yg菌株进行产酶试验并对其酶活性以及酶解最适条件进行测定.结果显示:Yg菌株所产壳聚糖酶具有较强的降解壳聚糖的能力,不同产酶时间所得酶液中,产酶36h所得酶液的酶活力最强;用产酶36h所得酶液降解3%壳聚糖,酶解最适pH值为5.5—6.0,最适温度为50—55℃,10%的酶量完全降解3%的壳聚糖所需时间为30h.  相似文献   

11.
This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was ob tained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 ℃C, which is higher than that of free acylase I (60 ℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.  相似文献   

12.
以黄粉虫为材料,采用盐析、亲和柱层析、Sephadex G-100分子筛及DE-52离子交换柱层析等制得纯化倍数约33倍,回收率为38%,比活力为294.7U/mg的几丁质酶制剂.在此基础上,以胶体几丁质为底物,考察黄粉虫几丁质酶的性质.结果表明:该酶催化水解几丁质的Km值为71.4mg/L;酶的最适pH值是6.0;最适温度为45℃左右;酶在pH 5.0~7.0,45℃以下酶活力稳定性较好.Na+和K+对酶活无影响;Ca2+、Cu2+对酶活起先扬后抑作用;Mn2+、Mg2+、Fe3+、Al3+对该酶活力均具有不同程度的抑制作用.  相似文献   

13.
对不同温度、pH、水浴时间下杏鲍菇菌柄中SOD酶比活性及其保留率进行研究,结果表明,杏鲍菇菌柄具有较高的SOD活性,25℃下,比活性可达351.4U/mg prot,最适宜保存其活性的pH为7.80,杏鲍菇菌柄中的SOD热稳定性突出,即使在100℃下水浴15min后,其SOD酶活保留率仍然高达74.17%(以25℃时测定活性为100%),具备优良的加工性能,但长时间的高温条件会使SOD酶活性的逐渐下降。  相似文献   

14.
The glutaraldehyde cross-linked chitosan beads were prepared under microwave irradiation and urease was immobilized onto the beads. The activity and the yield of enzyme activity of the immobilized urease were 10.83 U/g carrier and 47.7%, respectively. The optimum conditions of immobilization were 1% of glutaraldehyde volume fraction, 10 mg/g of urease/beads weight ratio, 24 h of the processing time and pH 6.5 of the reaction medium for immobilization. The properties of the immobilized urease were investigated and compared with those of the free enzyme. The optimum pH values were 6.5 and 7.0 for the immobilized and free urease, respectively. The optimum temperature was 60℃ for the free urease, while it shifted to 65 ℃ for the immobilized enzyme. The Michaelis constant Kr, was 9.1 mmol/L for the immobilized and 12.5 mmol/L for the free urease. The immobilized urease retained 40% of its initial enzyme activity even after 10 repeated uses. The immobilized urease stored at 4 ℃ retained 46% of its initial activity even after 35 d.  相似文献   

15.
膳食纤维对人体尤其是儿童有重要的意义.利用酶碱法在西瓜籽仁及糯豆渣中提取水不溶性膳食纤维.西瓜籽仁最佳工艺条件:碱解温度为60℃,碱解pH为10,酶浓度为12 mg/mL,酶作用时间为50 min.在此基础上所得的水不溶性膳食纤维的产率为23.96%;糯豆渣最佳工艺条件:碱解时间10 h.碱解温度55℃,碱液浓度1.5%,料液比1∶7,在此基础上所得的水不溶性膳食纤维的产率为28.86%.得到的膳食纤维可用于乳制品、饮料及儿童食品.  相似文献   

16.
目的:研究纤维素酶法提取谷精草中总黄酮的最佳工艺。方法:采用紫外分光光度法分别考察酶用量、提取时间、料液比、提取温度对谷精草总黄酮提取率的影响,并在此基础上设计L9(34)正交试验,优选最佳提取工艺。结果:最佳条件是酶用量0.03 g,提取时间2.5 h,料液比1∶40,提取温度55℃,采用最佳工艺,总黄酮提取率可达0.879%。结论:该方法可以用于谷精草总黄酮的提取。  相似文献   

17.
通过对不同硫酸铵饱和度沉淀所得的牛肝中皂苷酶活力的比较,筛选出较高生物活性皂苷酶,确定了最佳硫酸铵饱和度为55%.酶性质及酶反应最适条件的研究表明:水解穿山龙皂苷的酶反应最佳底物浓度为2%、最佳酶反应时间为4h、最适反应温度为42℃、最适pH值为5.0.  相似文献   

18.
用涂布平板法从温泉水中分离到1株产高温蛋白酶的嗜热菌,命名为P4.通过对菌株P4的生理生化试验和16S rRNA基因鉴定,初步确定其为一株嗜热脂肪地芽孢杆菌(Geobacillus stearothermophilus).菌株P4所产蛋白酶的最适反应温度在65-75℃之间,最适催化pH值为8.0,Zn2+、Mg2+对菌...  相似文献   

19.
从土壤中分离筛选到一株降解生淀粉能力较强的菌株,通过固体发酵其生淀粉糖化酶活为2237U/g(按U/g麦麸计),RDA值为15.25%。根据形态学特性初步鉴定该菌属于拟青霉属(Paecilomyces sp.)。其最适生长温度为30℃,最适生长起始pH5。其粗酶液24h水解生玉米淀粉的水解率为86.88%;对不同来源的生淀粉的水解能力不同,为玉米粉〉面粉〉米粉〉木薯粉〉甘薯淀粉;其最适作用pH为4,最适作用温度为70℃。  相似文献   

20.
纯化了黑曲霉Aspergillus niger FJL0801糖化酶,并对其酶学性质进行研究.粗酶液经纯化后,较粗酶液纯化了38.42倍,酶活回收率达到17.45%.酶最适作用温度为60℃;最适反应pH值为4.5;在60℃下,保温2 h后,相对酶活42%±2.8%.在pH4.5,60℃下,作用时间在60 min以内,其酶活保存89%±2.56%;其酶学性质符合淀粉糖化工业化过程中对酶的要求,该酶比较适合应用于淀粉糖化工业.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号