首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在对数教学中时常遇到下列问题 :(1 )比较log4 5与log56的大小。(2 )比较logn(n 1 )与logn 1(n 2 )的大小。(3 )已知a >2 ,求证 :loga - 1a >loga(a 1 )。(4 )已知 0 <a <b <1 ,试比较loga(a 1 )与logb(b 1 )的大小。我们可以通过不等式的缩放解决 ,但能否对上述问题统一处理呢 ?经过分析我们只需讨论函数f(x)=logx(x a)或 f(x) =logx ax(x≠ 1 ,a >0 )的单调性即可。本文给出这类函数单调性的一个结论。定理 (Ⅰ ) 当a≥ 1时 ,函数 f(x) =logx(x a)在区间 (0…  相似文献   

2.
确定参变量的取值范围问题 ,是中学数学的一大知识点 ,也是数学教学的难点之一 .这类问题直接求解往往比较复杂 ,如果我们能适当作一些“技术处理” ,则可以优化求解过程 .下面谈谈简化参数问题的几种常见思维策略 .1 变形转化有些题目直接下手往往比较复杂 ,若对已知式子作等价变形 ,常可化难为易、化繁为简 .例 1 设对所有实数x ,不等式x2 log24 (a 1)a 2xlog22aa 1 log2(a 1) 24a2 >0恒成立 ,求a的取值范围 .解 设log2a 12a =t,欲使所给不等式大于 0恒成立 .只需  ( 3 t)x2 - 2xt 2t>0恒成立 ,…  相似文献   

3.
题目 已知函数y =f(x) =log2 〔2 ( 3a - 2 )x2 4ax a 1〕的值域为 ( -∞ , ∞ ) ,试求实数a的取值范围 .误解 函数 f(x)的值域为 ( -∞ , ∞ ) ,∴ 2 ( 3a - 2 )x2 4ax a 1>0恒成立 ,于是有2 ( 3a - 2 ) >0 ,( 1)Δ =16a2 - 8( 3a - 2 ) (a 1) <0 . ( 2 )由 ( 1)得a >23,由 ( 2 )得a <- 2或a >1,∴a >1.因此 ,所求a的取值范围为a >1.这个解答的错误是容易断定的 .例如 ,令a =2 ,则a∈ ( 1, ∞ ) .这时 ,y =log2 ( 8x2 8x 3) =log2 8x 122 1.由于 8x 122 1≥ 1,所以y的…  相似文献   

4.
分母有理化是代数恒等变换的一种手段 ,其实 ,分子有理化在许多问题中也有着独特的作用 .例 1 设函数f(x) =loga(x2 +1+x) ,判断f(x)在实数R上的奇偶性 .解 f(x)的定义域关于原点对称 .f( -x) =loga(x2 +1-x)=loga(x2 +1-x) (x2 +1+x)x2 +1+x=loga1x2 +1+x=-f(x) .∴f(x)为奇函数 .例 2 设p=a+3 +a+7,Q =2a +5 (a >-3 ) ,试比较P、Q的大小 .解 ∵a+7-a+5    =2a +7+a +5 ,a +5 -a +3= 2a+5 +a+3 ,又∵a+7+a+5 >  a +5 +a +3 ,∴a +7-a +5 < a+5 -a+3 .∴P>Q …  相似文献   

5.
平均不等式是解决最值问题的常用方法之一 ,但是利用它求最值必须满足“一正、二定、三相等”3个基本条件 .有些最值问题 ,在运用平均不等式时等号不能成立 ,此时 ,可适当引入参数 ,利用待定系数法 ,解决平均不等式中等号不能成立的问题 .下面举例加以说明 .一、f(x) =axm + bxn(a ,b ,m ,n>0 )例 1  (2 0 0 0年上海市高考题 )已知函数f(x) =x2 + 2x+ax ,x∈ [1,+∞ ) ,若a=12 ,求函数 f(x)的最小值 .分析 当a=12 时 ,f(x) =x + 12x+ 2≥ 2 12 + 2 ,当且仅当x =12x,即x =22 时取等号 .但 22<1,不在函数定义…  相似文献   

6.
求解含参数不等式的恒成立问题是不等式中的重点和难点 ,也是各类考试的热点 .这类问题由于既有参数又含变量 ,学生往往望而生畏 ,常因处理不当而费时费力 ,怎样处理这类问题呢 ?等价转化是捷径 ,即运用等价转化的思想将其转化为函数问题 ,运用函数的性质求解既能解决问题又能减少运算量 .1 转化为一次函数问题通过变形将其转化为一次函数 ,运用一次函数的性质求解 .一次函数 f(x) =kx b(k≠ 0 )有如下性质 :(1) f(x) >0在 [a ,b]上恒成立 f(a) >0且f(b) >0 ;(2 )若k >0 ,则 f(x) >0在 [a ,b]上恒成立 f(a) >0 ;(3)…  相似文献   

7.
在数学解题中经常碰到带有“恒成立”字样的数学问题 ,对这类问题的求解 ,不少学生感到困难较多。本文通过具体的实例 ,来阐述“恒成立”问题的常用求解方法 :1 图象法通过作出有关的函数的图象 ,从图象上找出恒成立的参数范围。例 1 问实数a在何范围时 ,不等式  |x -3| |x -4 |>a恒成立 ?分析 此题一般思路是 :先进行零点分段 ,再利用最值分别求出a的范围 ,最后取交集 ,得出a的范围 ,这种方法思路虽较明确 ,但其分类讨论较复杂 ,因此利用图象法来求解更好。解 令 f(x) =|x -3| |x -4 |,g(x) =a ,作出f(x)与 g(x)的图…  相似文献   

8.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

9.
纵观近年全国各省市高考数学模拟试题 ,“不动点”问题悄然兴起 .这类问题通常以“不动点”为载体 ,将函数、数列、不等式、方程、解析几何等知识有机地交汇在一起 ,因而极富思考性和挑战性 .下面笔者精选出 5道典型例题并予深刻剖析 ,旨在探索题型规律 ,揭示解题方法 .例 1 对于任意定义在区间D上的函数f(x) ,若实数x0 ∈D满足f(x0 ) =x0 ,则称x0 为函数 f(x)在D上的一个不动点 .(1)求函数f(x) =2x + 1x -2在 (0 ,+∞ ) 上的不动点 ;(2 )若函数f(x) =2x + 1x +a在 (0 ,+∞ )上没有不动点 ,求a的取值范围 .分析与解…  相似文献   

10.
特例法作为高考数学中简捷、快速的解题方法 ,是根据题意选取特殊的例子 (如特殊值、特殊函数、特殊角、特殊点、特殊数列等 ) ,从而得出正确答案 .那么在什么情况下可用此法 ?下面举例说明 ,供参考 .一、“恒成立型”问题当所给的命题对于在实数集R(或某区间 )上恒成立 ,求命题中的参数等问题 ,可考虑使用取特殊值法 .例 1  (2 0 0 1年全国高考题 )设f(x)是定义在R上的偶函数 ,其图像关于直线x=1对称 ,对任意x1,x2 ∈ [0 ,12 ],都有f(x1 x2 ) =f(x1)·f(x2 ) ,且f(1 ) =a >0 ,求f(12 )及f(14) .分析 此题是x1,x2 “…  相似文献   

11.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

12.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

13.
选择题1 下列各式 :( 1) 2 0 0 1 {x|x≤ 2 0 0 3};( 2 ) 2 0 0 3∈ {x|x <2 0 0 3};( 3) {2 0 0 3} {x|x≤ 20 0 3};( 4)Φ∈ {x|x <2 0 0 3},其中正确式子的个数为 (   )A 1  B 2  C 3  D 42 满足f(π +x) =- f(x) ,f( -x) =f(x)的函数 f(x)可能是 (   )A sinx B sin x2  C cos2x D cosx3 若函数 f(x) =ax(a >0 ,a≠ 1)为减函数 ,那么 g(x) =log1a1x - 1的图象是 (   )A       BC       D4 如果a·b =a·c且a≠ 0 ,那么 (   )A b =…  相似文献   

14.
不等式中恒成立问题是各类考试中的常见题型,其解法灵活.那么,如何求解呢?下面通过例题加以说明.一、分离参数,转化为求函数的最值例1 设f(x)是定义在(-∞,3]上的减函数,已知f(a2-sinx)≤f(a+1+cos2x)对于x∈R恒成立,求实数a的取值范围.分析:应在定义域和增减性的条件下去掉函数符号f,使a从f中解脱出来.解:原不等式等价于a+1+cos2x≤a2-sinx≤3对x∈R恒成立,即        a2≤3+sinx,a2-a≥1+cos2x+sinx①②对x∈R恒成立.令t(x)=3+sinx,则①对x∈R恒成令s(x)=1+cos2x…  相似文献   

15.
1999年全国高中数学竞赛第一试第 (3)小题是 :若 (log2 3 ) x - (log53 ) x ≥ (log2 3 ) -y- (log53 ) -y,则 (   )(A)x - y≥ 0   (B)x y≥ 0(C)x - y≤ 0 (D)x y≤ 0下面从该题出发 ,谈一些值得思考的问题 .1 思考途径①考察函数 y =f(x) =(log2 3 ) x- (log53 ) x.原不等式即为f(x) ≥ f(- y) .易知 ,f(x)在R上是增函数 ,故推得x≥ - y,因此得x y≥ 0 ,故选(B)②原不等可化为 :(log2 3 ) x (log53 ) -y ≥(log2 3 ) -y (log53 ) x  (1 ) 由 (1 )立即推…  相似文献   

16.
在解决函数有关问题中 ,经常会碰到含有“某区间上一切变量都有某条件成立”的问题 .解决这类问题的关键在于巧妙合理地对变量赋予一系列特殊的值 ,然后通过代数推理 ,即可快速求解 .1 求值例 1 如果函数 f(x) =(x+a) 3 对任意x∈R都有 f(1+x) =- f(1-x) ,试求 f(2 ) + f(- 2 )的值 .解 由 f(1+x) =- f(1-x)对任意x∈R成立 ,可设x =0 ,得 f(1) =- f(1) ,∴f(1) =0 .又 f(1) =(1+a) 3 ,∴a =- 1.故 f(2 ) + f(- 2 ) =(2 - 1) 3 + (- 2 - 1) 3=- 2 6 .例 2 函数 f(x)是定义在R上的奇函数 ,且对任意的x∈R…  相似文献   

17.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

18.
本文例举几种忽视函数定义域导致解题错误的实例并加以剖析 .例 1 已知函数f(x) =2 log3 x ,x∈〔1,9〕 ,求函数g(x) =〔f(x)〕2 f(x2 )的最大值和最小值 .错解 ∵f(x) =2 log3 x ,∴g(x) =〔f(x)〕2 f(x2 )=( 2 log3 x) 2 2 log3 x2 =log23 x 6log3 x 6=(log3 x 3) 2 - 3 .∵x∈〔1,9〕 ,∴log3 x∈〔0 ,2〕 ,当log3 x =0时 ,g(x) min=6;当log3 x =2时 ,g(x) max=2 2 .剖析 上面的解题错误地认为 f(x)的定义域即为 g(x)的定义域 ,事实上 g(x)的定…  相似文献   

19.
含参数不等式恒成立时 ,参数的取值范围问题是中学数学的难点之一 ,也是高考数学复习的一个热点 ,由于这类问题的条件均以“恒成立”的方式给出 ,多数学生对此只能作出表面理解 ,又由于在教材中找不到解决这类问题的理论依据 ,因此在解答这类问题时觉得困难。本文介绍几种常见方法 ,对这类问题进行实质性的分析、解答 ,供参考。1、利用一次函数的性质(1)一次函数 y =f(x) =kx +b ,在x∈ [m ,n]上f(x) >0恒成立的充要条件是 :k >0f(m) >0 或 k <0f(n) >0 或 f(m) >0f(n) >0(2 )一次函数 y =f(x) =kx +b在x∈ [m…  相似文献   

20.
字母讨论题是目前高考试题的热点之一 ,1 999年高考试题中有三个字母讨论题 ,很多学生做这类题不能把握问题关键 ,本文将对怎样进行分类讨论作进一步的探讨。解字母讨论题不一定要急于找到按什么分类标准进行分类讨论 ,而可以是探讨从怎样解这种题型入手 ,逼出分类的方法。例 1 解关于x的不等式 (2a) x2 >a·2 -x,(a >0 )。解  (可作为指数不等式来求解 )两边取以 2为底的对数 ,得 :(log2 a 1 )·x2 >-x log2 a①当log2 a 1 =0 ,即a =1 / 2时 ,不等式解集为 :{x|x >-1 } ;②当log2 a 1≠ 0时 ,不等式变为 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号