首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二次函数y=αx^2 bx c(α≠0)的图象是一条抛物线,这条抛物线是轴对称图形,其顶点的横坐标为-b/2α,对称轴是直线x=-b/2α,对称轴是经过顶点且垂直于x轴的一条直线。  相似文献   

2.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

3.
我们知道,抛物线y=ax2+bx+c(a≠0)是轴对称图形,它的对称轴是直线x=-b2a,顶点在对称轴上.在解决有关抛物线的问题时,若能巧用抛物线的对称性,常可收到出奇制胜、简捷明快之效.一、比较大小例1若二次函数  相似文献   

4.
张九英 《学周刊C版》2010,(7):154-154
二次函数y=ax^2+6x+c(a≠0)的图像是抛物线,抛物线的对称轴是x=-b/2a,顶点坐标为(-b/2a,4ac-b^2/4a)系数a、b、c的符号与抛物线的位置之间有如下关系  相似文献   

5.
知识网络图解2 基础知识梳理( 1)定义 :形如y=ax2 +bx +c(a≠ 0 ) (一般式 )的函数叫做二次函数 ,其图象是抛物线 .( 2 )图象画法 :用描点法 ,先确定顶点、对称轴、开口方向 ,再对称地描点 (一般取 5点 ) .( 3)抛物线y =ax2 +bx +c=a(x +b2a) 2 +4ac -b24a 的对称轴是直线x =- b2a,顶点坐标是 ( -b2a,4ac -b24a ) .当a >0时 ,开口向上 ,在对称轴左侧 ,y随x的增大而减小 ,在对称轴右侧 ,y随x的增大而增大 ,x =- b2a时 ,y有最小值4ac-b24a ;当a <0时 ,开口向下 ,在对称轴左侧 ,y随x的增大而增大 ,在对称轴右侧 ,y随x的增大而减小 ,x =- b2a …  相似文献   

6.
中考知识梳理1.二次函数y=ax~2+bx+c(a≠0)的图象与性质其图象是抛物线,对称轴是直线x=-b/(2a),顶点坐标是(-b/(2a),(4ac)-(b~2)/(4a)).(1)当a>0时,抛物线的开口向上,当x<-b/(2a)时,函数值y随x的增大而减小;当x>-b/(2a)时,函数值y随x的增大而增  相似文献   

7.
二次函数的图象和性质是初中代数的核心内容,是全国各省、市中考命题的热点.二次函数y=ax^2+bx+c(a≠0)的图象是关于直线x=-b/2a成轴对称的抛物线,它的对称轴x=-b/2a过抛物线的顶点且平行于y轴,巧用这个对称性质,常常能使求解变得简洁,并优化解题过程.本文举例说明它的一些基本运用,供同学们参考.  相似文献   

8.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

9.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

10.
一、关系 二次函数y=ax~2+by+c(a≠0)的图象是由系数a,b,c决定的,系数符号与抛物线有如下关系: 1.二次项系数a决定抛物线的开口方向。 a>0开口向上; a<0开口向下。 2.抛物线的对称轴是直线x=-b/2a。 b=0抛物线的对称轴是y轴; ab>0(a,b同号)抛物线的对称轴在y轴的  相似文献   

11.
抛物线y=ax^2 bx c关于直线x=-b/2a对称,其中-b/2a是顶点的横坐标,利用这一对称性合理变换已知条件求抛物线的解析式,简捷、独到,有事半功倍之效,举例如下:  相似文献   

12.
我们知道,抛物线y=ax^2+bx+c(a≠0)是关。于直线x=-b/2a对称的轴对称图形.由轴对称图形的性质可知,若垂直于对称轴的直线与抛物线相交于两点,则这两点必关于对称轴对称.特别地,当抛物线与x轴相交于两点时,  相似文献   

13.
一般地,我们把形如y=ax2+ bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项.x为自变量,y为因变量.等号右边自变量的最高次数是2.二次函数图像是轴对称图形.对称轴为直线x=-b/2a·对称轴与二次函数图像唯一的交点为二次函数图像的顶点P.特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0).a,b同号,对称轴在y轴左侧.a,b异号,对称轴在y轴右侧.  相似文献   

14.
<正>二次函数y=f(x)=ax2+bx+c(a≠0)的图像(抛物线)关于直线x=-b/2a对称.如果有f(p)=f(q),且p≠q,则f(p+q)=c.简证如下:法1 f(p)=f(q),因为对称轴方程为x=-b/2a=(p+q)2,所以,p+q=-b/a.所以f(p+q)=f(-b/a)=a(-  相似文献   

15.
抛物线y=ax~2+bx+c(a≠0)是轴对称图形.在应用对称性时应注意三点: 1.对称轴是直线x=b/(2a); 2.顶点在对称轴上; 3.设抛物线与x轴的交点为(x_1,0)和(x_2,0),由对称性知,  相似文献   

16.
常见二次函数一般形式是y=ax~2+bx+c经配方后有顶点式是或y=a(x+h)~2+k抛物线的顶点是或(-h,k),对称轴是x=-b/2a或x=-h,二次函数另一种形式是乘积式y=a(x-x_1)(x-x_2),在解题时如能灵活选设所求二次函数解析式,将使解题过程大为简便。下面举一例予以说明之: 已知二次函数的图象的顶点坐标(3,-2)对称轴与y轴平行,并且图象与x轴的两个交点叫的距离为4,求二次函数解析式。  相似文献   

17.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

18.
我们知道,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线,它的顶点坐标是(-2ba,4ac-b24a),对称轴是平行于y轴的直线x=-2ba·而a、b、c的符号与抛物线在坐标系中的位置关系有以下三条规律:1·a的符号与抛物线开口方向的关系:(1)a>0抛物线开口向上;(2)a<0抛物线开口向下·2·a、b的符号与抛物线的对称轴的位置的关系:(1)ab>0对称轴位于原点左侧;(2)ab<0对称轴位于原点右侧;(3)b=0对称轴是y轴(直线x=0)·3·c的符号与抛物线和y轴交点的位置的关系:(1)c>0抛物线和y轴的正半轴相交;(2)c<0抛物线和y轴的负半轴相交;(3)c=0抛物线和y轴的交点就是顶点·…  相似文献   

19.
陈海 《物理教师》2004,25(10):3-64
形如y=ax^2 bx c的一元二次函数的图像是抛物线,将其配方为y=a(z b/2a)^2 (4ac-b^2)/4a,知对称轴方程为x=-b/2a,若抛物线与x轴的交点坐标为x、x2,则有x=(x1 x2)/2,当抛物线过坐标原点,且x=-b/2a≠0,即x1=0,所以x2=2x,下面来看这一性质的应用,第20届全国中学生物理竞赛(预赛)试题第6  相似文献   

20.
一、一元二次函数 一元二次函数y=ax^2+bx+c(a≠0)一般式可配方为:y=a(x+b/2a)^2+4ac-b^2/4a,顶点(-b/2a,4ac-b^2/4a),对称轴x=-b/2a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号