首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c(a≠0)的图象是一条抛物线,为轴对称图形,对称轴为x=-b/2a.因此,我们就有结论:若A(x_1,y_1)、B(x_2,y_2)为抛物线上一对对称点,则有(x_1+x_2)/2=-b/2a,y_1=y_2.下面谈谈上述结论的应用.一、在求抛物线上点的坐标中的应用例1已知抛物线y=ax2+bx+c的对称轴为x=-1,A(2,1)、B(m,1)为抛物线上  相似文献   

2.
我们知道,抛物线y=ax~2+bx+c是以直线x=-b/2a为对称轴的轴对称图形,它的顶点在对称轴上.由此可以讲一步得到如下结论:(1)抛物线上纵坐标相同的两点是对称点,抛物线上对称两点的纵坐标相同.(2)若抛物线上有两点(x_1,y_1),(x_2,y_1),则抛物线的对称轴为:直线x=x_1+x_2/2.解决有关抛物线的问题  相似文献   

3.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

4.
一、关系 二次函数y=ax~2+by+c(a≠0)的图象是由系数a,b,c决定的,系数符号与抛物线有如下关系: 1.二次项系数a决定抛物线的开口方向。 a>0开口向上; a<0开口向下。 2.抛物线的对称轴是直线x=-b/2a。 b=0抛物线的对称轴是y轴; ab>0(a,b同号)抛物线的对称轴在y轴的  相似文献   

5.
我们知道 ,抛物线y =ax2 +bx +c (a≠ 0 )是轴对称图形 ,它的对称轴是直线x=-b2a,它的顶点在对称轴上 .解决有关抛物线的问题时 ,若能巧用抛物线的对称性 ,则常可以给出简捷的解法 .例 1 已知抛物线的对称轴是x =1 ,抛物线与y轴交于点 (0 ,3) ,与x轴两交点间的距离为 4,求此抛物线的解析式 .分析 设抛物线的解析式为y =ax2 +bx+c.若按常规解法 ,则需要解关于a、b、c的三元一次方程组 ,变形过程比较繁杂 ;若巧用抛物线的对称性 ,解法就简捷了 .因为抛物线的对称轴为x=1 ,与x轴两交点间的距离为 4,由抛物线的对称性…  相似文献   

6.
杨宝善 《初中生》2011,(36):27-29
我们知道,抛物线y=ax2+bx+c(a≠0)是轴对称图形,其对称轴是x=-b2a.利用抛物线的对称性,能得到以下性质:性质1:抛物线上关于对称轴对称的两点的纵坐标相等,反过来,抛物线上纵坐标相等的两点关于对称轴对称.特别地,如果抛  相似文献   

7.
对于一般的抛物线方程ax2 +2hxy +by2 +2gx +2fy+c =0 ,其中L2 =ab -h2= 0 (1)通常用平移、旋转的方法确定其位置及形状 ,但过程往往较为复杂。本文另辟途径 ,给出一种较为简便的确定方法。为了使后面定理的证明不过于冗长 ,我们首先给出以下两条结论 (从抛物线的标准形式很容易证得 ) :(a)若直线与抛物线只有一个交点 ,则此直线与抛物线相切或者平行于抛物线的对称轴 ;(b)若抛物线的切线与对称轴垂直 ,则此切线一定过抛物线的顶点。方程 (1)通过配方总可变成如下形式 (具体方法见后 ) :L12 +L2 =0 (2 )其中L1=a1x +b1y +c1,L2 =a2 x +b2 …  相似文献   

8.
1参数符号的判定(1)系数a符号的判定当抛物线y=ax2+bx+c(a≠0)开口向上时,a>0;开口向下时,a<0.(2)系数b符号的判定若抛物线y=ax2+bx+c(a≠0)的对称轴  相似文献   

9.
抛物线y=ax~2+bx+c(a≠0)是轴对称图形.在应用对称性时应注意三点: 1.对称轴是直线x=b/(2a); 2.顶点在对称轴上; 3.设抛物线与x轴的交点为(x_1,0)和(x_2,0),由对称性知,  相似文献   

10.
知识网络图解2 基础知识梳理( 1)定义 :形如y=ax2 +bx +c(a≠ 0 ) (一般式 )的函数叫做二次函数 ,其图象是抛物线 .( 2 )图象画法 :用描点法 ,先确定顶点、对称轴、开口方向 ,再对称地描点 (一般取 5点 ) .( 3)抛物线y =ax2 +bx +c=a(x +b2a) 2 +4ac -b24a 的对称轴是直线x =- b2a,顶点坐标是 ( -b2a,4ac -b24a ) .当a >0时 ,开口向上 ,在对称轴左侧 ,y随x的增大而减小 ,在对称轴右侧 ,y随x的增大而增大 ,x =- b2a时 ,y有最小值4ac-b24a ;当a <0时 ,开口向下 ,在对称轴左侧 ,y随x的增大而增大 ,在对称轴右侧 ,y随x的增大而减小 ,x =- b2a …  相似文献   

11.
一、要点解读对于二次函数的解析式:y=ax~2 bx c(a≠0)。其图象与其系数的关系如下:1.a的符号:a的符号由抛物线的开口方向决定.抛物线开口向上,则a>0;抛物线开口向下,则a<0.2.b的符号:b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧。顶点的横坐  相似文献   

12.
一、利用二次函数或判别式求极值一元二次函数y=Ax~2+Bx+C的图象为抛物线,顶点坐标为x=-B/2A,y=4ac-b~2/4a.若A>0,开口向上,则存在最小值;若A<0,开口向下,则存在最大值.一元二次函数的极值条件是x=-B/2A,这也是对称轴的  相似文献   

13.
正我们知道,抛物线y=ax~2+bx+c是轴对称图形,它的对称轴为x=b/(2a)。抛物线的轴对称性是二次函数的一个重要特征,即若抛物线上有两个对称点的坐标为(x_1,y_1)、(x_2,y_2)则一定有y_1=y_2,且其对称轴为x=(x_1+x_2)/2。当抛物线开口方向向上,抛物线上的点距离对称轴越远,所对应的点的纵坐  相似文献   

14.
一、关系二次函数y=ax2+bx+c(a≠0)的图象是由系数a、b、c决定的,系数符号与抛物线有如下关系: 1.二次项系数a决定抛物线的开口方向。a>0 开口向上;a<0 开口向下。2.抛物线的对称轴是x=-b/2a。  相似文献   

15.
我们知道,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线,它的顶点坐标是(-2ba,4ac-b24a),对称轴是平行于y轴的直线x=-2ba·而a、b、c的符号与抛物线在坐标系中的位置关系有以下三条规律:1·a的符号与抛物线开口方向的关系:(1)a>0抛物线开口向上;(2)a<0抛物线开口向下·2·a、b的符号与抛物线的对称轴的位置的关系:(1)ab>0对称轴位于原点左侧;(2)ab<0对称轴位于原点右侧;(3)b=0对称轴是y轴(直线x=0)·3·c的符号与抛物线和y轴交点的位置的关系:(1)c>0抛物线和y轴的正半轴相交;(2)c<0抛物线和y轴的负半轴相交;(3)c=0抛物线和y轴的交点就是顶点·…  相似文献   

16.
抛物线y=ax~2 bx c(a≠0)的图象是由系数a、b、c决定的,系数的符号与抛物线形状有如下关系:1.二次项系数a决定抛物线的开口方向.a>0,开口向上;a<0,开口向下。2.抛物线的对称轴是x=-b/(2a)·b=0,抛物线的对称轴是y轴.ab>0(a、b同号),抛物线的对称轴在y轴的左侧;ab<0(a、b异号)抛物线的对称轴在y轴的右侧。3.c是抛物线与y轴交点的纵坐标.c=0,抛物线经过原点;c>0,抛物线与y轴交于正半轴;c<0,抛物线与y轴交于负半轴。4.b~2-4ac确定图象与x轴是否相交,b~2-4ac>0,  相似文献   

17.
一、y=ax~2+bx+c中a、b、c的几何意义 1.抛物线开口向上,则(a>0,抛物线开口向下,则a<0;2.抛物线与y轴交于x轴上方,则c>O,与y轴交于x轴下方,则c<0.3。抛物线的对称轴位于y轴左侧,则a、b同号,对称轴位于y轴右侧,则a、b异号。例1 二次函数y=ax~2+bx+c图象如图所示,试决定a、b、c符号。解∵抛物线开口向上,∴a>0,抛物线与y轴交于x轴上方,∴c>0,又对称轴位于y轴左侧,故a、b同号,由于a>0,∴b>0,∴a>0,b>0,c>0。  相似文献   

18.
<正>我们知道,当抛物线y=ax2+bx+c(a≠0)的开口向上时,抛物线上的点到对称轴的距离越大,则点的纵坐标就越大;反之,点的纵坐标就越小.当抛物线y=ax2+bx+c(a≠0)的开口向下时,抛物线上的点到对称轴的距离越大,则点的纵坐标就越小;反之,点的纵坐标就越大.根据这一"事实",抛物线上点的纵坐标的大小关系就归结为点到对称轴距离的大小关系,我们将这一方法简称为"距离"法.下面举例说明"距离"法在比较二次函数值大小问题中的运用.  相似文献   

19.
二次函数y=ax2 bx c的图象与其系数a、b、c之间的关系可归纳总结如下.1.a决定抛物线的开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.2.a决定抛物线的开口大小:a越大,抛物线开口越小;a越小,抛物线开口越大.3.a、b的符号决定抛物线的对称轴:a、b同号,抛物线的对称轴在y轴的左侧;a、b异号,抛物线的对称轴在y轴的右侧.4.c的符号决定抛物线与y轴的交点:当x=0时,y=c,即抛物线与y轴的交点是(0,c),当c>0时,抛物线与y轴的正半轴相交;当c=0时,抛物线经过坐标原点;当c<0时,抛物线与y轴的负半轴相交.5.Δ=b2-4ac决定抛物线y=ax2 bx c与x轴交…  相似文献   

20.
(时间:90分钟满分:100分)一、填空题(每小题3分,共30分)1.若点P(x,y)的坐标满足(x+1)2+y-3√=0,则点P关于原点的对称点P'的坐标是.2.函数y=x-1√2-x√中的x的取值范围是.3.若y-3与x成正比例,当x=2时,y=7,则y与x之间的函数关系式是.4.若y=(m2+m)xm-2m-1是二次函数,则m=.5.抛物线y=-2x2+8x-6的开口方向是,顶点的坐标是.6.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=.7.若抛物线y=x2+ax-3的对称轴是y轴,则a=.8.设反比例函数y=-3x中x的取值范围是1≤x≤3,则变量y的最大值是.9.二次函数y=ax2+bx+c的图象如图1所示,22则一次函数y=-acx+b的…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号