首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
设△ABC的边和面积分别为a,b,c和△,则a~2 b~2 c~2≥3~(1/4)△. 证1 比较法.a~2 b~2 c~2-3~(1/4)△=2(b~2 c~2)-4bcosin(A 30°)≥2(b-C)~2≥0. 证2 (a~ b~2 c~2)-(3~(1/4)△)~2=(a~2 b~2 c~2)-3(a b c)(a b-C)·(b c-a)·(C d-b)=2[(a~2-b~2)~2 (b~2-c~2)`2 (c~2-a~2)~2]≥0.  相似文献   

2.
定理1 设△ABC内角不大于120°,则 a~2 b~2 c~2=4 3~(1/2)△ (x-y)~2 (y-z)~2 (x-z)~2,(1)其中a,b,c和△分别为△ABC的边和面积,x,y,z为△ABC的费马点到顶点A、B、C的距离。  相似文献   

3.
难题征解     
52.锐角△ABC中,AD、BE、CF是三条高,H为垂心,记△ABC、△HBC、△HCA、△HAB的外接圆半径之和为m,内接圆半径之和为n,求证m+n=△ABC周长。 (安徽怀中黄全福提供) 53 设△ABC的旁切圆半径和面积分别为r_a、r_b、r_c、△,△A′B′C′的三边和面积分别为a′、b′、c′、△′。证明或否定r_a/a′+r_b/b′+r_c/c′≥3 3~(1/2)/2 (△/△′)~(1/2)等号当且仅当△ABC与△A′B′C′均为正三角形时成  相似文献   

4.
三角形中半角公式的应用在△ABC中,我们有:sinA/2=((s+b)(s-c)/bc)~(1/2),cosA/2=(s(s-a)/bc)~(1/2),…等等。(2s=a+b+c)这一组公式(“半角公式”)的证明不难(略),它们在斜三角形方面的应用较广,举例如下。 [例1] 在△ABC中,a、b、c成等差数列,求证:ctgA/2 ctgC/2=3。  相似文献   

5.
判定三角形形状的题目在中考中经常出现,这类题目给出的条件往往与一元二次方程的根与系数关系、根的判别式、三角函数的知识有关,因此,需要综合运用代数和几何知识求解。 一、配方法 将给出的三边关系式的条件配成几个平方式之和的形式。 例1 在△ABC中,三边a、b、c满足(1)a b c=[3(2)~(1/2)]/2,(2)a~2 b~2 c~2=3/2.试判定△ABC的形状.  相似文献   

6.
在△ABC中,记三边长BC=a,CA=b,AB=c,角A、角B、角C的平分线长分别为t_a、t_b、t_c,△ABC的外接圆半径与内切圆半径分别为R与r(下文均用此记号),笔者在文[1]与文[2]中分别证明了: ∑1/t_a≥1/R 1/2r (1) ∑1/t_a≥2/3~(1/2)∑1/a (2)当且仅当△ABC为正三角形时,(1)、(2)两式取等号(这里∑表示循环和,下同). 本文将给出较(1)、(2)两式更强的不等式,即 定理 在△ABC中,有 (∑1/t_a)~2≥(∑1/a)~2 (1/2r)~2 (3)当且仅当△ABC为正三角形时,(3)式取等号.  相似文献   

7.
错在哪里     
数学在△ABC中,a=5,b =8,C=60°,则(?)·(?)的值为( ).A.20 B.-20 C.203~(1/2) D.-203~(1/2)  相似文献   

8.
在△ABC中有余弦定理:a~2=b~2 c~2-2bc·cosA,变形得: a~2=(b c)~2-2bc(1 cosA) =(b c)~2-4bc·cos~2A/2 ≥(b c)~2-(b c)~2cos~2A/2 =(b c)~2sin~2A/2. 由此得sinA/2≤a/(b c)(当且仅当b=c时取等号).同理可得sinB/2≤b/(a c)(当且仅当a=c时取等号);  相似文献   

9.
设a,b,c,Δ与a′,b′,c′,Δ′分别代表△ABC与△A′B′C′的三边与面积,则著名的Pedoe不等式是: a′~2(-a~2+b~2+c~2)+b′~2(a~2-b~2+c~2)+c′~2(a~2+b~2-c~2)≥16ΔΔ′,式中等号当且仅当△ABC∽△A′B′C′时成立。文[1]证明了: 设△.表示a~(1/2),b~(1/2),c~(1/2)组成的三角形的面积,则有  相似文献   

10.
题 设P为△ABC内任意一点,P到三边BC、CA、AB的距离依次为d_1,d_2,d_3,记DC=O,CA=b,AB=c,求证:a/d_1 b/d_2 c/d_3≥(a b c)~2/2S_(△ABC).(IMO-22)  相似文献   

11.
题目:△ABC中,如果a+b≥2c,证明C≤60°.(2011年北约自主招生数学试卷第4题) 证明:由余弦定理知cos C=a2+b2-c2/2ab≥a2+b2-(a+b/2)2/2ab=3/4(a2+b2)-ab/2/2ab≥1/2.所以,C≤60°.故得证. 笔者经过研究,发现本题结论可以推广为: 定理1:△ABC中,如果an+cn≥2bn(n∈Z),则B≤60°,其中a,b,c表示△ABC中角A,B,C的对应边.  相似文献   

12.
我们知道△ABC的内角平分线长为:现把△ABC的内角平分线延长与它的外接圆相交,将延长后的内角平分线长简记为T_a、T_b、T_c,则易求得: T_c=a+b/2 (ab/p(p-c))~(1/2). (2) 如果用a=2RsinA,b=2RsinB,c=2RsinC,代入(1)、(2)得  相似文献   

13.
本文设△ABC 边 a、b、c 上的高分别为 h_a、h_b、h_c,半周长为 s,内切圆半径为 r,外接圆半径为 R.命题1、如图1,设 p、k、l 分别为△ABC 内的点 G到边 a、b、c 的距离,则有(a/p) (b/k) (c/l)≥6 3~(1/2)(1)证明:由柯西不等式,  相似文献   

14.
勾股定理及其逆定理是平面几何中的重要定理,其应用非常广泛.我们在应用这两个定理解题时,常常会出现错解,现将错误归纳剖析如下,以引起我们的重视.一、忽视题目中的隐含条件例1在Rt△ABC中,a、b、c分别为三条边,∠B=90°,如果a=3cm,b=4cm,求边c的长.误解:∵△ABC是直角三角形,∴a2+b2=c2,即32+42=c2,解得c=5(cm).剖析:上面的解法,忽视了题目中∠B=90°,b是斜边的隐含条件.正解:∵∠B=90°,∴a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股…  相似文献   

15.
(一)我省今年中考数学试题第八题是这样的:在△ABC中,已经学过△=(1/2)absinC,c~2=a~2+b~2-2abcosC,另外还学过sin~2a+cos~2a=1,试根据上述公式证明△=(s(s-a)(s-b)(s-c))~(1/2)(这里s=(a+b+c)/2)。  相似文献   

16.
《高中生》2007,(24)
一、直接运用正弦定理或余弦定理求解的问题例1在△ABC中,已知角A,B,C的对应边分别为a,b,c,且满足4sin~2((B C)/2)-cos2A=7/2.(1)求角A的度数;(2)若a=3~(1/2),b c=3,且b相似文献   

17.
《中学数学》(苏州)1996年第11期张善立先生证明了一个猜想不等式:设p为△ABC的费马点,记PA=u,PB=v,PC=w,△ABC的三边为a,b,c,则 (u v w)~2≤ab bc ca (1) 笔者加强(1)为:(2) 证明 在△ABC中,有tgA/2 tgB/2  相似文献   

18.
定理在△ABC 中,D 在 AB 上 ,AD=λ·AB,BC=a,CA=b,CD=m,则∠C=90°的充要条件是 m~2=λ~2a~2+(1-λ)~2b~2(0<λ<1).证明:设(?)=b,(?)=a,则(?)=a-b.(?)=λ(?)=λ(a-b),(?)=(?)+(?)=λa+(1-λ)b,((?))~2=[λa+(1-λ)b]~2.∴m~2=λ~2a~2+(1-λ)~2b~2+2λ(1-λ)a·b.∠C=90°的充要条件为 a·b=0,即 m~2=λ~2a~2+(1-λ)~2b~2.当λ=1/2,a~2/b~2,a/(a+b)时,CD 分别为 AB 边中线、高  相似文献   

19.
<正>本文约定:△ABC三边长分别为a、b、c,面积为△,s、R、r分别表示△ABC的半周长,外接圆半径和内切圆半径.在△ABC中,有不等式a~2+b~2+c~2≥■△(1)这是著名的Weisenbock不等式~(\[1\]).(1)已有很多种形式的加强,其中最著名的是费-哈不等式  相似文献   

20.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号