首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探索不同落点(T内角、Body追身和Wide外角)网球侧上旋发球技术动作的运动学规律。方法:采用2台三维高速摄像机拍摄10名网球运动员侧上旋发球技术动作,使用北京体育大学视讯解析系统采集运动学参数,对原始数据进行平滑和归一化处理等(Fc=10)。结果:1)抛球引拍阶段:抛球时左肩水平投影角呈显著性差异,左肩、右肩和左膝关节角速度变量呈显著性相关(R=0.82),站位方式无显著性差异;2)"挠背"阶段:不同落点发球时发力顺序协调一致,由下至上逐步将力量传递至击球点;3)挥拍击球阶段:击球时刻不同落点间分速度和击球角度差异性显著,外角侧旋>追身侧旋>内角侧旋,内角上旋>追身上旋>外角上旋,外角Angle>追身Angle>内角Angle。击球点高度与身高的倍数为外角(1.32)、追身(1.25)和内角(1.21),击球点由内至外逐渐向右偏移;4)随挥阶段:击球后重心位移和速度分量未出现显著性差异,膝关节角度变化均值39.7±1.8°。结论:我国高校网球二级运动员亟需储备发球隐蔽性、击球点空间位置、挥拍轨迹和击球速度分量等方面的意识体系。应当继续以运动生物力学为手段加强网球各类型发球技术动作、各环节运动特征和发球所致损伤因素等进行系统化和精细化研究。  相似文献   

2.
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.  相似文献   

3.
The golfer’s body (trunk/arms/club) can be modeled as an inclined axle-chain system and the rotations of its parts observed on the functional swing plane (FSP) can represent the actual angular motions closely. The purpose of this study was to investigate the effects of pelvis-shoulders torsional separation style on the kinematic sequences employed by the axle-chain system in golf driving. Seventy-four male skilled golfers (handicap ≤ 3) were assigned to five groups based on their shoulder girdle motion and X-factor stretch characteristics: Late Shoulder Acceleration, Large Downswing Stretch, Large Backswing Stretch, Medium Total Stretch, and Small Total Stretch. Swing trials were captured by an optical system and the hip-line, thorax, shoulder-line, upper-lever, club, and wrist angular positions/velocities were calculated on the FSP. Kinematic sequences were established based on the timings of the peak angular velocities (backswing and downswing sequences) and the backswing-to-downswing transition time points (transition sequence). The backswing and transition sequences were somewhat consistent across the groups, showing full or partial proximal-to-distal sequences with minor variations. The downswing sequence was inconsistent across the groups and the angular velocity peaks of the body segments were not significantly separated. Various swing characteristics associated with the separation styles influenced the motion sequences.  相似文献   

4.
A 3D predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model, which includes a four degree of freedom golfer model, a flexible shaft based on Rayleigh beam theory, an impulse-momentum impact model and a spin rate dependent aerodynamic ball model, is presented. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscle torque production. These joint torques are optimized to create swings and launch conditions that maximize carry distance. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness as a function of the length. The completed four-part model with the default parameters is used to estimate the ball carry of a golf swing using a particular club. This model will be useful for experimenting with club design parameters to predict their effect on the ball trajectory and carry distance.  相似文献   

5.
Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the "Front Foot" and "Reverse" styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

6.
Abstract

Although the golf coaching literature stresses the importance of weight transfer during the swing, research has been conflicting or lacking statistical support. A potential problem with previous studies is that no attempt was made to account for different movement strategies in the golf swing. This study evaluated the relationship between centre of pressure measures and club head velocity within two previously identified swing styles, the “Front Foot” and “Reverse” styles. Thirty-nine Front Foot golfers and 19 Reverse golfers performed swings with a driver while standing on two force plates. From the force plate data, centre of pressure displacement, velocity, range, and timing parameters were calculated. Correlation and regression analysis indicated that a larger range of centre of pressure and a more rapid centre of pressure movement in the downswing was associated with a larger club head velocity at ball contact for the Front Foot group. For the Reverse golfers, positioning the centre of pressure further from the back foot at late backswing and a more rapid centre of pressure transfer towards the back foot at ball contact was associated with a larger club head velocity at ball contact. This study has highlighted the importance of identifying different movement strategies before evaluating performance measures, as different parameters were found to be important for the Front Foot and Reverse styles.  相似文献   

7.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = - 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

8.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

9.
The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers.  相似文献   

10.
中外优秀男排选手前排扣球技术的三维运动学比较研究   总被引:10,自引:4,他引:6  
通过三维高速录像研究表明 ,中国选手具有起跳时间短 ,两脚同时蹬地的起跳特征 ;外国选手具有起跳时间长 ,两脚依次蹬地的起跳特征。扣球是以转体、伸肩和收腹带动挥臂击球的三维动作 ,转体和伸肩动作占有重要作用。击球瞬间肘关节呈 15 0 (°)左右略屈肘击球能充分发挥前臂旋内加速功能。  相似文献   

11.
王一梅强攻扣球技术动作解析   总被引:1,自引:0,他引:1       下载免费PDF全文
白海波 《体育科研》2009,30(1):81-84
采用三雏DLT录像解析法对中国女排队员王一梅强攻扣球技术动作进行解析。结果表明,王一梅在助跑阶段的最大水平速度分别为375cm/s;起跳瞬间两足间距离的长短与起跳时间有密切关系,即两脚间距离越短、起跳时间也越短,起跳动作完成的越快。王一梅空中击球技术特征。击球点高,空中击球前合理运用了躯干向后展体扭转,以加大躯干扭转角度。击球瞬间有助于快速屈体,和加快扭转角速度、致使躯干连接部胸骨上缘的速度加快,并依次带动肩、肘、手指掌关节点速度的加快,并达到最高速度峰值。  相似文献   

12.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

13.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

14.
Pelvis-thorax coordination has been recognised to be associated with swing speed. Increasing angular separation between the pelvis and thorax has been thought to initiate the stretch shortening cycle and lead to increased clubhead speed. The purpose of this study was to determine whether pelvis-thorax coupling played a significant role in regulating clubhead speed, in a group of low-handicap golfers (mean handicap = 4.1). Sixteen participants played shots to target distances determined based on their typical 5- and 6-iron shot distances. Half the difference between median 5- and 6-iron distance for each participant was used to create three swing effort conditions: “minus”, “norm”, and “plus”. Ten shots were played under each swing effort condition using both the 5-iron and 6-iron, resulting in six shot categories and 60 shots per participant. No significant differences were found for X-factor for club or swing effort. X-factor stretch showed significant differences for club and swing effort. Continuous relative phase (CRP) results mainly showed evidence of the stretch shortening cycle in the downswing and that it was more pronounced late in the downswing as swing effort increased. Substantial inter-individual CRP variability demonstrated the need for individual analyses when investigating coordination in the golf swing.  相似文献   

15.
The aim of this study was to develop a method to quantify movement variability in the backswing and downswing phase of the golf swing and statistically assess whether there was any relationship between movement variability and outcome variability. Sixteen highly skilled golfers each performed 10 swings wearing retro-reflective markers which were tracked by a three-dimensional (3D) motion analysis system operating at 400 Hz. Ball launch conditions were captured using a launch monitor. Performance variability was calculated for each body marker based on a scalene ellipsoid volume concept which produced a score representative of the 3D variability over the 10 trials. Outcome variability was quantified as the coefficient of variation of ball velocity for the 10 trials. The statistical analysis revealed no significant correlations between performance variability for each marker trajectory and outcome variability. Performance variability in the backswing or downswing was not related to ball velocity variability. It was postulated that individual players used their own strategies in order to control their performance variability, such that it had no effect on outcome variability.  相似文献   

16.
Some studies have reported that overarm baseball pitching shows a proximal to distal sequential joint motion including a rapid extension of the elbow. It has been suggested that the rapid elbow extension just before ball release is not due to the action of the elbow extensor muscles, but the underlying mechanisms are not so clear. The purpose of this study was to determine the contributions of each joint muscular- and motion-dependent torques, including the upper trunk and throwing arm joints to generate the rapid elbow extension during baseball pitching. The right handed throwing motions of three baseball pitchers were recorded using five high-speed video cameras and the positional data were calculated using the direct linear transformation method. A throwing arm dynamic model of the upper trunk and throwing arm joints was then used, including 10 degrees of freedom, to calculate the throwing arm joint muscular-, throwing arm and upper trunk joint motion-, gravity-, and external force-dependent components that contribute to the maximum elbow extension angular velocity. The results showed that the rapid elbow extension was primarily due to the upper trunk counterclockwise rotation and shoulder horizontal adduction angular velocity-dependent torques. This study implied that the trunk counterclockwise rotators and shoulder horizontal adductors generate positive torques to maintain the angular velocities of the upper trunk counterclockwise rotation and shoulder horizontal adduction may play a key role in producing the rapid elbow extension.  相似文献   

17.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

18.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

19.
The aim of this study was to quantify and explain the effect of shaft stiffness on the dynamics of golf drives. Twenty golfers performed swings with two clubs designed to differ only in shaft bending stiffness. Wrist kinematics and clubhead presentation to the ball were determined using optical motion capture systems in conjunction with a radar device for capturing ball speed, launch angle, and spin. Shaft stiffness had a marginally small effect on clubhead and ball speeds, which increased by 0.45% (p < 0.001) and 0.7% (p = 0.008), respectively, for the less stiff club. Two factors directly contributed to these increases: (i) a faster recovery of the lower flex shaft from lag to lead bending just before impact (p < 0.001); and (ii) an increase of 0.4% in angular velocity of the grip of the lower flex club at impact (p = 0.003). Unsurprisingly, decreases in shaft stiffness led to more shaft bending at the transition from backswing to downswing (p < 0.001). Contrary to previous research, lead bending at impact marginally increased for the stiffer shaft (p = 0.003). Overall, and taking effect sizes into account, the changes in shaft stiffness in isolation did not have a meaningful effect on the measured parameters, for the type of shaft investigated.  相似文献   

20.
Weight transfer has been identified as important in group-based analyses. The aim of this study was to extend this work by examining the importance of weight transfer in the golf swing on an individual basis. Five professional and amateur golfers performed 50 swings with the driver, hitting a ball into a net. The golfer's centre of pressure position and velocity, parallel with the line of shot, were measured by two force plates at eight swing events that were identified from high-speed video. The relationships between these parameters and club head velocity at ball contact were examined using regression statistics. The results did support the use of group-based analysis, with all golfers returning significant relationships. However, results were also individual-specific, with golfers returning different combinations of significant factors. Furthermore, factors not identified in group-based analysis were significant on an individual basis. The most consistent relationship was a larger weight transfer range associated with a larger club head velocity (p < 0.05). All golfers also returned at least one significant relationship with rate of weight transfer at swing events (p < 0.01). Individual-based analysis should form part of performance-based biomechanical analysis of sporting skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号