首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 数学归纳法所谓“数学归纳法”是证明一个与自然数n有关的数学命题时 ,所采取的一种证明方法。其具体步骤 :( 1)验证n取第一个值n0 时 (如n0 =1、2或 3)命题成立 ;( 2 )假设n =k(k∈N且k≥n0 )时结论正确 ,并且在此假设条件下 ,当n =k +1时结论也正确。则原命题正确。这种方法我们称之为数学归纳法。如证明等差数列的通项公式an=a1+(n - 1)d证明 :( 1)当n =1时左边 =a1右边 =a1+( 1- 1)d =a1等式成立( 2 )假设当n =k(k∈N且k≥ 1)时an=a1+(k - 1)d则当n =k +1时ak +1=ak+d =a1+(k - 1)d +d=…  相似文献   

2.
利用数学归纳法来证明某些与自然数n有关的不等式 ,证k到 (k 1)这一过程是许多同学感到困难的一步 .为此 ,笔者介绍一种“凑配分裂”的转化策略 ,以解决这一难点 .1 凑配从归纳假设n=k的不等式出发 ,凑配出待证n=k 1时的不等式的某一端 ,再结合不等式性质将问题有效转化 .例 1  (《代数》课本下册 12 3页例 5)已知x >- 1,且x≠ 0 ,n ∈N ,且n≥ 2 ,求证 ( 1 x) n >1 nx .证明  (i)当n=2时 ,左边 =( 1 x) 2 =1 2x x2 ,右边 =1 2x ,因为x2 >0 ,所以原不等式成立 .(ii)假设不等式当n =k(k≥ 2 )时成立 ,就是( …  相似文献   

3.
关于自然数的命题大都可以用数学归纳法来证明 ,其中的核心问题是如何恰当地运用归纳假设 ,证明n =k+ 1时命题的正确性 ,即由n=k时成立的命题过渡到n =k+ 1时也成立 ,这也正是证题的难点所在 .所以在具体证题时应强化目标意识 ,运用技巧进行有效的过渡和转化 ,达到证题的目标 .本文就此问题谈谈几种常用的过渡策略 .1 思前想后找联系我们既要盯着目标 ,即n =k+ 1时的结论 ,也要顾及n =k时的假设 ,打通他们之间的内在联系后就容易过渡了 .例 1 已知 f(n) =1+ 12 + 13+… + 1n  (n≥ 2且n∈N) ,求证 :n+ f(1) +… + f(…  相似文献   

4.
极限与导数     
课时一 数列归纳法 基础篇 诊断练习一、选择题1.用数学归纳法证明 1n +1+1n +2 +… +12 n>132 4 时由 k到 k +1,不等式左端变化是 (   )( A)增加 12 ( k +1) 一项 .( B)增加 12 k +1和 12 k +2 二项 .( C)增加 12 k +1和 12 k +2 二项且减少 1k +1项 .( D)以上结论均错 .2 .用数学归纳法证明 1+12 +13+… +12 n - 11) ,第一步是证明不等式 (   )( A) 1<2成立 .  ( B) 1+12 <2成立 .( C) 1+12 +13<2成立 .( D) 1+12 +13+14 <2成立 .3.若命题 p( n)对 n =k成立 ,可以推出它对 n =k+2也成立 ,又若 p( n)对 n =2成立 ,则 (…  相似文献   

5.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

6.
对于数列型恒等式和不等式的证明 ,通常都采用数学归纳法 ,但如果用构造数列的方法来证明 ,往往更简洁 ,并且也容易被学生所接受 .1 “a1 a2 a3 … an ≤Sn(或≥Sn)”型对这种类型的恒等式和不等式 ,可以构造数列{bk} ,使得bk =Sk-Sk- 1(规定S0 =0 ) ,这样 ,b1 b2 b3 … bn =(S1-S0 ) (S2 -S1) (S3-S2 ) … (Sn-Sn- 1) =Sn.对k∈N ,如果有ak ≤bk(或ak ≥bk) ,那么a1 a2 a3 … an ≤Sn(或≥Sn)成立 .例 1  (1993年全国高考题改编 )证明 8· 112 · 32 8· 232 · 52 …  相似文献   

7.
对于一边是常数的数列不等式 ,在用数学归纳法直接证明时 ,归纳过渡往往有一定的困难 .若能利用不等式的传递性、可加性等性质 ,通过强化命题 ,放缩常数等技巧 ,常可顺利完成归纳过渡 ,下面举例说明 .1 通过分析归纳过渡所需要的条件强化命题由于更强的命题提供更强的归纳假设 ,因而一个更强的命题 ,用数学归纳法反而容易证明 .例 1  (1997年加拿大奥林匹克试题 )设 0 <a1 ,定义a1 =1+a ,an+ 1 =1an+a ,求证 :对一切自然数n ,有an >1.分析 假设n=k时 ,ak +a <1+a ,则ak+ 1= 1ak+a<1+a ,推不出ak+ 1 >1.怎么办呢…  相似文献   

8.
《中等数学》2 0 0 2年第 2期数学奥林匹克问题高 1 1 0 :设a、b、c∈R+ .试证 :ab2 + bc2 + ca2 ≥ 1a+ 1b+ 1c.①本文推广不等式① ,得到如下命题 设x1,x2 ,… ,xn ∈R+ ,n >1 ,αβ>0 .则xα1xβ2+ xα2xβ3+… + xαn - 1xβn+ xαnxβ1≥xα - β1+xα- β2 +… +xα - βn ,②等号当且仅当x1=x2 =… =xn 时成立 .证明 :(用数学归纳法 )( 1 )当n =2时 ,式②左 -右 =xα1xβ2+ xα2xβ1-xα - β1-xα- β2=(xα1-xα2 ) (xβ1-xβ2 )xβ1xβ2.根据x1>0 ,x2 >0 ,αβ >0及幂函数…  相似文献   

9.
一、数论部分1.设k和n是正整数 ,且n >2 .证明 :方程xn -yn=2 k无正整数解 .(第 5 3届罗马尼亚数学奥林匹克决赛 )证明 :反证法 .设n0 >2是满足xn0 -yn0 =2 m(m >0 )中最小的一个 .若n0 是偶数 ,设n0 =2l,l∈N ,则x2l-y2l =(xl-yl) (xl+yl) ,于是xl-yl 是 2的整数次幂 ,与n0 的最小性矛盾 .若n0 是奇数 ,定义集合A ={p|xn0 -yn0 =2 p,p、x、y均为正整数 } .设p0 是A中最小的一个元素 ,则xn0 -yn0 =2 p0 ,所以x、y的奇偶性相同 .又因为(x -y) (xn0 -1+xn0 -2 y +… +xyn…  相似文献   

10.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

11.
自然数的平方和∑nk =1k2 =16 n(n 1) ( 2n 1)有多种证明方法 ,除了用数学归纳法、变换数学公式、组合恒等式等证明外 ,还可以构造模型来证明 .模型 1 分析求和数 ,k2 (k =1,2 ,… ,n)表示k个k之和 .12 2 2 … n2 形式整齐 .作一等边三角形 ,将各边分成n - 1等份 ,过分点作另两边的平行线 ,可以得到 1 2 … n =12 n(n 1)个分点 .将求和数摆到三角形各交点上 ,k2 摆在第k行的k个位置上 ,表示k个k之和 (图 1( 1) ) .旋转此三角形数阵得到另两个三角形数阵 (图 1( 2 )、1( 3) ) ,每一线段上的数字顺序成等…  相似文献   

12.
贵刊文 [1]、[2 ]实际上探讨了一类可用数学归纳法证明的与自然数有关的命题的非数学归纳法的证明方法 ,文 [1]给出了二个定理 ,方法虽好 ,但却增加了记忆负担 ;文 [2 ]给出了不借助于辅助定理 ,直接证明的方法 ,虽然操作起来更容易 ,但其关键步骤(即构造相关的不等式或等式 )不易想到 .受文 [1]、[2 ]的启发 ,笔者以这类问题的数学归纳法证明中探寻出一种非数学归纳法的证明方法思路更清晰 ,操作更容易 .例 1 求证1 11 2 … 11 2 … n =2 - 2n 1.  分析 用数学归纳法证明该式时 ,在第二步 ,假设对n- 1时等式成立 ,即等式 1 11 2…  相似文献   

13.
柯西不等式的推广定理 1 :设aij>0 (其中j=1 ,2 ,… ,m ,i=1 ,2 ,… ,n) ,则( ni=1∏mj=1aij) m ≤ ∏mj=1 ni=1amij) (1 )当m =2时 ,即为柯西不等式 :( ni=1aibi) 2 ≤ ( ni=1a2 i) ( ni=1b2 i) (2 )  一、引理 (权方和不等式 )  设xi、yi∈R+,(i=1 ,2 ,… ,n) ,m >0 ,则( ni=1xi)m +1≤ ( ni=1yi)m · ni=1xm+1 iymi(3 )式中等号当且仅当 x1 y1 =x2y2 =… =xnyn时成立。证明可参见[1 ] 。二、定理的证明对m用数学归纳法。当m =2时 ,即为柯西不等式 ,结论…  相似文献   

14.
关于分式不等式的证明 ,人们已总结了不少方法 .本文利用柯西 (Cauchy)不等式的一种变式再给出一种证法 ,这种证法常被人们所忽视 ,然而它在证明一类分式不等式时却十分凑效 ,现介绍如下 ,以供参考 .柯西不等式的变式 设ai∈R ,bi∈R(i=1,2 ,… ,n) ,则    ( ni=1aibi) 2 ≤ ( ni=1ai) ( ni=1aib2 i) ,( )等号成立当且仅当b1=b2 =… =bn.由柯西不等式易知不等式 ( )成立 ,证明从略 .为书写方便 ,用 表示循环和 .例 1 已知x ,y ,z∈R ,k为常数 ,k∈R ,求证 xky z ykz x zkx …  相似文献   

15.
我们知道 ,对于一般的n阶方阵A ,其特征值不一定能求出来 ,本文将介绍一类特殊矩阵的特征值的求法 .一、引理与定理引理 若A(t) =(aij(t) ) n×n,且Limtt0aij(t) =aij(i,j =1,2 ,… ,n) ,记A= (aij) n×n,则Limtt0 A(t) = A .证 对行列式的阶数n用数学归纳法当n =1时命题显然成立 .假设对n 1时命题成立 ,现证对n命题也成立 .事实上 ,由行列式的展开定理[1] ,[2 ] 及归纳假设 ,Limtt0 A(t) =Limtt0 nk=1a1k(t) . ( 1) 1+kM1k(t) = nk=1a1k.( 1) 1+kM1…  相似文献   

16.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

17.
在数学归纳法的教学中 ,若直接采用如下的归纳公理 :自然数集合N的任何一个子集 ,若含有数 1 (元之素 ) ,且在含有任何一个数a的同时含有它的后继数a′,则它与N相同 .然后再给出数学归纳法的证题法则 ,学生是难以理解与接受的 .所以在几乎所有的关于数学归纳法的教材中 ,都是采用直接给出证明法则的形式 ,即 :若证明一个关于自然数的命题 ,我们先证明它对n =n0 (例如n0=1 )时成立 ,然后假设n =k时命题成立 ,再证明n =k +1时命题也成立 ,就可断定这个命题对于取第一个值n0 后面的所有自然数也都成立 .但这种叙述正如G·波利亚所…  相似文献   

18.
学生在解题时常因运算的繁冗心烦不安 ,解题思路的中断遇题发愁 ,对题意的不解无处入手…… .这些现象大都是解题思路受挫而引发的 ,极大地挫伤了学生学习数学的热情 .本文对此作些初步的探讨 .1 调整策略解题思路受挫后 ,首先应分析受挫的原因 ,及时调整解题的策略 ,使中断的思路得到延续 .例 1 设n∈N ,求证 ( nk =11k)· ( nk =1 k)≥n2 .分析 学生大多会想到用数学归纳证明此不等式 ,但由n =k  (k∈N)时命题成立而n =k 1过渡中运算复杂 ,让大多数学生望而生畏 ,思路由此中断 .在明确原因后 ,发现此题的证明应先从简…  相似文献   

19.
分式不等式的证明是一热门话题 ,方法颇多 .本文介绍Cauchy不等式的一个变形 :定理 设 pi ∈R+ ,xi ∈R ,i =1,2 ,… ,n ,则(p1x1+p2 x2 +… +pnxn) 2 ≤(p1+p2 +… +pn) (p1x21+p2 x22 +… +pnx2 n) .该定理可记为F(p1,p2 ,… ,pn;x1,x2 ,… ,xn)≥ 0 ,或简记为 :F(pi;xi)≥ 0 .定理广泛应用于一类不等式的证明 ,尤其是证明一类分式不等式 :只须适当地、巧妙地选取 pi,xi;换言之 ,只须恰当地构造F(pi;xi) ≥ 0 .1 巧证一类不含等号的不等式例 1  (第 32届乌克兰数学竞赛试题 …  相似文献   

20.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n&gt;1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123&gt;1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k&gt;1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1&gt;1+2k+2k1+1,要证明S2k+1&gt;1+k2+1,只须证1+2k+21k+1&gt;1+k2+1,即证2k1+1&gt;21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号