首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用于神经信号再生的神经功能电压驱动电路   总被引:1,自引:0,他引:1  
采用华润上华0.6μm CMOS工艺,设计实现了一种用于神经信号再生微电子系统的低功耗、高增益功能电激励电压驱动电路.它可以用于驱动激励电极和与之相连的神经来再生神经信号.电路由2部分组成:全差分折叠式共源共栅放大器及带过载保护的互补型甲乙类输出级.电路采用了满摆幅的输入输出结构,保证了大输入电压范围和大输出电压范围.仿真结果表明,电路增益可以达到81dB,具有295kHz的3dB带宽.芯片面积为1.06mm×0.52mm.经流片实现后在片测试,在单电源 5V下工作,直流功耗约为7.5mW,输出电压幅度达到4.8V;同时在单电源 3.3V下也可正常工作.  相似文献   

2.
用2μmGaAs HBT工艺实现了12 Gbit/s用于光纤传输系统的限幅放大器.整个系统包括一级输入缓冲、三级放大、一级用于驱动50Ω传输线的输出缓冲和失调电压补偿回路4个部分.采用双电源供电,正电源为2V,负电源为-2V,功耗为280mW.小信号增益大于46dB,输入信号比特率为12 Gbit/s时,在输出电压幅度保持恒定(单端峰峰值400 mV)的条件下,输入动态范围约为40dB。眼图性能良好.芯片面积为1.15mm×0.7 mm.  相似文献   

3.
采用0.35μm CMOS工艺设计2.5 Gbit/s速率光纤通信用收发全集成电路.发射部分包括复接和激光驱动电路, 完成4路622 Mbit/s随机信号输入、1路2.5 Gbit/s驱动信号输出的功能; 接收部分完成1路2.5 Gbit/s微弱随机信号输入、 4路622 Mbit/s分接输出功能.主要电路包括前置放大、限幅放大、时钟恢复、数据判决和1: 4分接. 测试结果显示, 2.5 Gbit/s光纤通信用发射芯片逻辑功能正确, 激光驱动器输出数据眼图10%~90%上升、下降沿时间分别为211.1 ps和200 ps; 2.5 Gbit/s光纤通信用接收芯片接收灵敏度优于20 mV, 恢复出的数据和时钟分别经过1: 4数据分接和1: 4时钟分频后, 相位抖动的均方根值分别为15.6 ps和1.9 ps. 两芯片均适用于2.5 Gbit/s速率光纤通信系统.  相似文献   

4.
提出了用于SOH系统SIM-4速率级光接收机中主放大器的CMOS限幅放大器的设计方法。此限幅放大器由输入缓冲、主放大单元、输出缓冲、偏置补偿电路四部分组成。当限幅放大器工作在622Mb/s,输入动态范围为47dB,50Ω负载上的输出限幅在900mVpp刑用5V电源供电,功耗约为70mW。  相似文献   

5.
基于0.13μm CMOS技术设计了一个应用于无线传感网频率合成器、电源电压为0.5 V的鉴频鉴相器.它的功能是比较输入信号的频率和相位差,并输出一个与该差值成比例的电压.因电源电压是0.5 V,所以该电路采用低阈值晶体管.为了增大相位误差的检测范围和提高最大工作频率,该电路采用了脉冲锁存的结构.当输入信号频率为2 M...  相似文献   

6.
描述了应用于电流模逻辑电路中的高线性度电压-电流转换电路的设计与实现.该电路采用高增益两级运算放大器构成负反馈,偏置电路利用工作在弱反型区的MOS管电压电流呈指数律关系构成PTAT(proportional to absolute temperature)基准电流源.详细分析了电阻的类型以及运算放大器的参数对线性度的影响.通过优化运算放大器的参数并采用电压系数较小的多晶硅电阻作为线性器件获得了较高的线性度.本电路已采用CSMC0.6μm CMOS工艺实现,测试结果表明:输出的总谐波失真为0.000 2%.输入动态范围为0~2.6V,输出电流为50~426 μA.PTAT基准电流源对电源变化的灵敏度为0.021 7.芯片采用5 V供电,功耗约为1.3 mW,芯片面积为0.112 mm2.  相似文献   

7.
给出了一个应用于无线局域网WLAN802.11a的中低噪声、高增益的下变频器.该下变频器采用高中频的结构,输入的射频频率(RF)、本振(LO)频率和输出的中频频率(IF)分别为5.15 ~5.35,4.15 ~4.35和1GHz.为了提高混频器的线性度,电路采用了伪差分的吉尔伯特结构和源极电阻负反馈技术;为了获得低的噪声系数,混频器采用电流源注入技术和LC谐振电路作为负载.此外,采用了一种改进的源极跟随器输出缓冲电路,在不恶化其他性能的情况下混频器可以达到较高的增益.该芯片采用0.18μm RF CMOS工艺制作,包含所有焊盘在内的芯片尺寸为580μm×1 185μm.测试结果表明:在1.8V电源电压下,消耗电流为3.8mA,转换增益为10.1dB,输入1dB压缩点为-3.5dBm,输入三阶截点为5.3dBm,单边带(SSB)噪声系数(NF)为8.65dB.  相似文献   

8.
采用TSMC0·18μm CMOS工艺实现了一种应用于光纤通信系统SDH STM-64的10Gbit/s1∶4分接器,整个系统采用树型结构,由1个高速1∶2分接器、2个低速1∶2分接器、分频器以及数据和时钟输入输出缓冲组成.为达到优化性能、降低功耗的目标,其中高速分接部分和5GHz1∶2分频器都采用共栅结构、单时钟输入的锁存器;而低速分接部分则由动态CMOS逻辑实现.通过在片晶圆测试,该芯片在输入10Gbit/s、长度为231-1的伪随机码流时工作性能良好,电源电压1·8V,功耗仅为100mW.芯片面积为0·65mm×0·75mm.  相似文献   

9.
采用OPA820作为增益G=5的前级放大器,中间级采用两片THS3001级联各实现G=10的中级放大器,末级采用THS3091作为增益G=2的末级放大器,该放大器在频率为10-4~20 MHz的通频带中可以实现放大增益为60 d B。该放大器将系统提供的5 V单电源通过升压芯片TPS61087和降压芯片MC34063A产生±18.2 V的电压,进而使用可调输出的三端稳压管LM317和LM337得到±5 V和±15 V的电压,用来给放大器供电。放大器末级输出电压经过精密峰值检波电路可得到信号的峰峰值,经过信号调理后送至A/D转换器ADS1286,通过MSP430单片机进行数据采集后,将相关信息送至液晶屏进行显示。  相似文献   

10.
描述了一种基于TSMC0 25μmCMOS工艺设计的10Gbit/s(STM 64,OC 192)四相位时钟1∶4分接器.为了实现最高的工作频率和抑制共模噪声,所有的电路都采用了源极耦合逻辑(SCFL)结构.本分接器的特点是通过采用固定延时缓冲来实现四相位时钟和输出边沿的对准.通过在晶圆测试,该芯片在输入10Gbit/s长度为231 -1伪随机码流时,分接功能正确.此时所测得的眼图的均方根抖动、上升沿和下降沿分别为11, 123和137ps.芯片面积为0 9mm×1 2mm,在3 3V单电源供电的情况下的典型功耗为550mW.  相似文献   

11.
描述了一种基于TSMC 0.25 μm CMOS工艺设计的10 Gbit/s(STM-64,OC-192)四相位时钟1:4分接器.为了实现最高的工作频率和抑制共模噪声,所有的电路都采用了源极耦合逻辑(SCFL)结构.本分接器的特点是通过采用固定延时缓冲来实现四相位时钟和输出边沿的对准.通过在晶圆测试,该芯片在输入10 Gbit/s 长度为231-1伪随机码流时,分接功能正确.此时所测得的眼图的均方根抖动、上升沿和下降沿分别为11,123和137 ps.芯片面积为0.9 mm×1.2 mm,在3.3 V单电源供电的情况下的典型功耗为550 mW.  相似文献   

12.
目前集成电路所用的电源电压有多种,一个电路中不同电压的芯片之间传递信号(即前级输出驱动后级输入)存在着低电平驱动高电平以及高电平驱动低电平的情况,有必要采取一些措施,避免出现影响电路正常工作的问题。该文在进行一系列实验后,结合实际给出了一些电路连接的方法。  相似文献   

13.
提出了一种12-Gbit/s的低功耗、宽带CMOS具有双反馈结构的前馈共栅差分跨阻放大器,用于甚短距离传输光电集成电路接收机.通过将输入节点的主极点提高到一个较高的频率,增大了放大器带宽.此外,采用2个反馈环路降低输入等效电阻,从而进一步提高了带宽.提出的跨阻放大器采用TSMC0.18μm CMOS工艺制造.整个电路具有较小的芯片面积,其核心面积仅为0.0036 mm~2.在不考虑两级差分的缓冲放大器时,其功耗为14.6 mW.测试结果表明,在1.8V的电源电压下,实现了9GHz的3dB带宽和49.2dBΩ的跨阻增益.测量的平均输入噪声电流功率谱密度为28.1 p A/Hz~(1/2).在相同的工艺条件下,与已发表的文献相比,DNFFCG差分跨组放大器具有最佳的增益带宽积.  相似文献   

14.
描述了用于SDH光纤通信STM-16速率级的2.488Gbit/s时钟和数据恢复电路.该电路采用基于注入式锁相环和D触发器的电路结构,在标准的0.35μmCMOS工艺上实现流片.经过测试,当输入长度为231-1的伪随机序列,数据速率为2.488Gbit/s时,在误码率为10-12的条件下,电路的灵敏度小于20mV.恢复得到的时钟具有2.8ps的均方根相位抖动,在100kHz频偏处的相位噪声为-110dBc/Hz,并具有大于40MHz的捕获范围.5V电源供电时,电路消耗680mW功率.芯片面积为1.49mm×1mm.  相似文献   

15.
采用TSMC 0.18μmCMOS工艺实现了一种应用于光纤通信系统SDH STM-64的10 Gbit/s1:4分接器,整个系统采用树型结构,由1个高速1:2分接器、2个低速1:2分接器、分频器以及数据和时钟输入输出缓冲组成.为达到优化性能、降低功耗的目标,其中高速分接部分和5 GHz 1:2分频器都采用共栅结构、单时钟输入的锁存器;而低速分接部分则由动态CMOS逻辑实现.通过在片晶圆测试,该芯片在输入10 Gbit/s、长度为231-1的伪随机码流时工作性能良好,电源电压1.8 V,功耗仅为100mW.芯片面积为0.65 mm×0.75 mm.  相似文献   

16.
针对无源光网络(PON)设计了10 Gbit/s的突发模式前置放大器. 为了获取大动态范围和快速响应,电路采用DC耦合结构,并设计了一种反馈型峰值检测单元以实现自动增益控制与阈值提取功能. 利用调节型共源共栅(RGC)结构的输入级单元减小了电路的输入电阻,使得包括光检测器电容在内的大寄生电容与电路的主极点相隔离,从而提高了带宽. 该前置放大器采用低成本的0.13 μm CMOS工艺实现,芯片面积为425μm×475μm,总功耗为23.4mW. 测试结果表明,电路的工作速率范围在1.25 ~10.312 5Gbit/s,可提供64.0 dBΩ的高跨阻增益与54. 6 dBΩ的低跨阻增益,输入动态范围大于22.9 dB. 等效输入噪声电流为23.4 pA/Hz1/2. 该放大器可满足10G-EPON与XG-PON的相关指标.  相似文献   

17.
设计了一种基于电子变压器的高效率低成本实验室电源。该电源有四路输出,前三路固定输出,分别为36、15、5 V;另一路输出电源从0~30 V连续可调。电路采用具有双反馈控制环的BUCK型变换器来保证输出电压和电流的连续可调。该变换器的主电路采用L4960作为控制芯片;利用电阻采样法和差动放大器、比较器原理设计了采样电路、反馈控制电路。为了进一步降低负载调整率和输出纹波,设计了恒流放电负载和低压差动态滤波器。实测数据表明,该实验室电源的功率因数达到0.95以上,效率达到80%以上,输出电压纹波仅为10 m V。  相似文献   

18.
基于阈值电压的负温度特性以及热电压的正温度特性,给以适当的权重后把它们相加,提出了一个零温度系数的基准电压电路。该器件由工作在亚阈值区的CMOS晶体管组成,不包含电阻和双极晶体管。采用3支路电流基准结构替代共源共栅结构和嵌入式运算放大器,具有芯片面积小和功耗低的优点。仿真结果表明,在标准0.18μmCMOS工艺下,该电路可在0.75 V电源电压下工作,输出电压为563 mV。在-40~125℃范围内,电压温度系数仅为17.5×10^-6/℃。电源电压范围在1.2~1.8 V时线性灵敏度为569.5×10^-6/V,电源抑制比可达到66.5 dB@100 Hz,最高功耗仅为187.4 nW。  相似文献   

19.
利用标准的0.18μm6层金属混合信号/射频CMOS工艺设计了一种工作在2.4 GHz频段的全集成E类功率放大器.电路采用两级放大器级联结构,其中驱动级利用谐振技术生成高摆幅开关信号;输出级采用E类结构实现了信号的功率放大.在1.2 V电源电压下,设计的功率放大器最高输出功率为8.8 dBm,功率附加效率(PAE)达到44%.同时,提出了一种E类功率放大器功率控制方法.通过改变进入E类开关晶体管的信号幅度和占空比,在3位数字控制字的控制下,输出功率达到-3~8.8 dBm.所设计的功率放大器可以满足诸如无线传感网络(WSN)和生物遥测等低功率系统的应用.  相似文献   

20.
通用控制器由单片机8031、接口芯片8279、8155、ADC0809、DAC0832等构成,在输入/输出电路中配以高性能模拟量放大电路AD623和V/I转换电路AD694及数字量驱动、隔离电路,使控制器工作更加稳定、可靠,使用更加灵活、方便。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号