首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《湖南教育》2007,(3):45-46
79.已知a、b、c∈R ,且abc=8,求aabbcc的最小值.解:因为函数(f x)=lnx在(0, ∞)上是增函数,所以对于任意a,b∈R ,恒有(a-b)[f(a)-f(b)]≥0成立,即a ln a b ln b≥a ln b b ln a.①同理,b ln b c ln c≥b ln c c ln b.②c ln c a ln a≥c ln a a ln c.③由① ② ③得2ln(aabbcc)≥(b c)ln a (a c)ln b (a b)ln c.所以有3ln(aabbcc)≥(a b c)ln(abc),即aabbcc≥(abc)a b c3.又因为abc=8,所以a b c≥3#3abc=6,即aabbcc≥82=64.当且仅当a=b=c=2时取等号,所以aabbcc的最小值为64.80.设a,b>0,求证:当λ>2时,有!a aλb$ !b bλa$≤λ$!λ2-1.证明:…  相似文献   

2.
命题 若实数 a,b,c满足 a b c=0 ,则  ( ) a3 b3 c3=3abc;( )关于 x的方程 ax2 bx c=0必有一根为 1;( ) b2 ≥ 4ac.证明  ( )由乘法公式 (a b c) (a2 b2 c2 - ab- bc- ca) =a3 b3 c3- 3abc知 ,当 a b c=0时 ,a3 b3 c3=3abc.( )当 x=1时 ,ax2 bx c=a b c= 0 ,故 x=1是方程 ax2 bx c=0的根 .( )当 a≠ 0时 ,ax2 bx c=0是一元二次方程 ,由 ( )知它有实数根 ,故△≥ 0 ,即b2 - 4ac≥ 0 ,b2 ≥ 4ac.当 a=0时 ,b2≥ 4ac显然成立 .这是一个重要的命题 ,它的应用极为广泛 ,利用它来解决条件中出现 (或可化成 ) a b …  相似文献   

3.
问题1 关于x的方程(a2 b2 c2)x2-2(ab bc ca)x a2 b2 c2=0有两个实数根,其中abc≠0.求证:a∶b=b∶c=c∶a. 证法1:∵方程有两个实数根, ∴△=[-2(ab bc ca)]2-4(a2 b2 c2)2≥0. 展开得a4 b4 c4-2a2bc-2ab2c-2abc2 a2b2 b2c2 c2a2≤0.  相似文献   

4.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

5.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

6.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

7.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

8.
几道数学竞赛题的简解   总被引:1,自引:0,他引:1  
题1设a、b、c为正实数,且a2 b2 c2 abc=4.证明:3abc≤ab bc ac≤abc 2.(第30届美国数学奥林匹克)证明:由4=a2 b2 c2 abc≥abc 3(abc)32,即abc≤1可知ab ac bc≥3(abc)32≥3abc.由题设知,a、b、c中一定有且只有两个数或者都不大于1,或者都不小于1.不妨设这两个数为a、b.则c(a-1)  相似文献   

9.
例1 已知x、y是实数,且满足 x2+xy+y2—2=0,求x2—xy+y2的取值范围. 解因为 x2+xy+y2=2①设x2—xy+y2=t ②①—②,得③①+③,得④由④知 t≤6,由变式,得解得 t≥2/3,所以例2 已知a、b、C满足a+b+c=0,abc=8,  相似文献   

10.
2004年全国初中数学联赛第14题及解答如下:已知a<0,b≤0,c>0且b2-4ac=b-2ac,求b2-4ac的最小值.解 令y=ax2 bx c,由a<0,b≤0,c>0,判别式Δ=b2-4ac>0,所以这个二次函数的图象是一条开口向下的抛物线,且与x轴有两个不同的交点A(x1,0)、B(x2,0).因为x1x2=ca<0,不妨设x1相似文献   

11.
在解题过程中 ,我们经常遇到形如a +b +c =0的条件 ,笔者在教学中发现 ,在此条件下有许多简捷、优美的结论 ,且有着广泛的应用。为此 ,本文探讨在条件a +b+c=0下的结论及相应的解题功能 ,供参考。1 结论结论 1 若a +b +c =0 ,则b2 ≥ 4ac或a2 ≥ 4bc或c2 ≥ 4ab。证明 因为a +b +c=0 ,所以b =-(a +c) ,b2 =(a +c) 2 =a2 +c2 +2ac≥ 2ac+2ac=4ac ,即b2 ≥ 4ac,同理可得a2 ≥ 4bc,c2 ≥ 4ab ,命题得证。结论 2 若a +b+c=0 ,则a3+b3+c3=3abc。证明 因为a +b +c=0 ,所以有a +b =-c,(a +b) 3=-c3,即a3+3a2 b +3ab2 +b3+c3=0 ,也即a3+3ab(a +…  相似文献   

12.
题 1 已知 a,b,c∈ R ,且 abc≤ 1 ,求证 :a bc b ca c ab ≥ 2 ( a b c) .(《数学通报》1 999年第 1期问题 1 1 71 )该题型新颖独特 ,其证法亦不多见 .贵刊仅在文 [1 ]中给出了一种证法 ,现笔者应用基本不等式简证如下 .证明 原式成立 a b c- c( a b c) c a b c- a( a b c) a a b c- b( a c) b≥ 2 . 1a 1b 1c- 3a b c≥ 2 . ( * )∵ 1a 1b 1c- 3a b c≥ 33abc- 13abc=23abc≥ 2 .(∵ 3a b c≤ 13abc)∴ ( * )成立 ,故原式证毕 .题 2 若 a,b,c∈ R ,abc=1 ,则aba3n 2 b3n 2 ab bcb3n 2 c3n…  相似文献   

13.
下列的式子称为欧拉公式a3+b3+c3-3abc =(a+b+c)(a2+b2+c2-ab-bc-ca) =1/2(a+b+c)[(a-b)2+(b-c)2+(c-a)2] 特别地,(1)当a+b+c=0时,有a3+b3+c3=3abc. (2)当c=0时,欧拉公式变为两数立方和公式. 请看公式的应用: 例1 分解因式(a+b-2x)3-(a-x)3-(b-x)3的结果等于____. (“希望杯”试题) 解因为  相似文献   

14.
结论 1 若Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,则函数 f(x) =x2 ax b x2 cx d的最小值是 f(x) min=12 (-Δ1 -Δ2 ) 2 (a -c) 2 .证明 :因为Δ1=a2 - 4b≤ 0 ,Δ2 =c2 - 4d≤ 0 ,所以x2 ax b≥ 0 ,x2 cx d≥ 0 ,f(x) =x2 ax b x2 cx d =x a22 0 - 4b -a222 x c22 0 - 4d -c222 .求 f(x)的最小值即求两定点A - a2 ,4b -a22 、B - c2 ,4d -c22 到x轴上一点 (x ,0 )距离和的最小值 ,即求两点A′ - a2 ,- 4b -a22 、B - c2 ,4d -c22 之距 |A′B|.点A′与A关于x轴对称 .根据对称性 |A′B|=|PA| |PB|,在x轴上任取一点…  相似文献   

15.
均值不等式是指课本中的不等式:①若a、b∈R,则a2 b≥ab;②若a、b、c∈R ,则a 3b c≥3abc.那么,在运用它们求最值时,必须满足“一正、二定、三相等”这三个基本条件,但在具体的问题中,这些条件往往不全满足,这时,就必须对式子作一定的恒等变形,使它同时满足这三个条件,现将恒等变形的常见方法与技巧归纳如下:一、拆项法【例1】若x>0,求函数y=x2 2x 1x4的最小值.解:∵x>0且x2 2x 1x4=x2 1x6=x2 8x 8x,∴y=x2 8x 8x≥33x2·8x·8x=12.故当且仅当x2=8x,即x=2时,ymin=12.二、添项减项法【例2】已知a≥b>0,求y=a (2a4-b)b的最小值.解:∵a≥b>2b>…  相似文献   

16.
第一试  一、选择题(满分42分,每小题7分)1 .已知abc≠0 ,且a b c=0 ,则代数式a2bc b2ca c2ab的值是(  ) .A .3  B .2  C .1  D .0标准答案:原式=-(b c)·abc -(c a)·bca -(a b)·cab =…=3 ,选A .别解1 :∵a3 b3 c3-3abc =…=(a b c)(a2 b2 c2 -ab-bc-ca) =0 ,∴a3 b3 c3=3abc.∴原式=a3 b3 c3abc =3 .别解2 :取a =b=1 ,c=-2 .下略.2 .已知p、q均为质数,且满足5 p2 3 q =5 9,则以p 3 ,1 -p q ,2 p q -4为边长的三角形是(  ) .A .锐角三角形   B .直角三角形C .钝角三角形   D .等腰三角形标准答案1 :…  相似文献   

17.
本期问题 初343已知x、y为正实数,n∈N,且n≥2.证明: n√x+(2n-1)y/x+n√y+(2n-1)x/y≥4. 初344 在边长为2的正方形ABCD中,动点E、F均在边AD上,满足AE=DF,联结CF与对角线BD交于点Q,联结AQ、BE交于点P.求DP的最小值. 高343设a、b、c>0,且abc=1,λ(λ≥1)为常数.证明:a1/a+b+λ+1/b+c+λ+1/ρ+δ+λ≤3/2+,当且仅当a=b=c=1时,上式等号成立.  相似文献   

18.
几个重要不等式的应用技巧   总被引:1,自引:0,他引:1  
从实际教学中发现 ,许多同学对现行高中代数第五章“不等式”的深入理解、掌握往往有一定的难度 ,下面就结合教学实际对四个重要不等式 :a2 b2 ≥ 2 ab(a,b∈ R当且仅当 a =b时取等号 ) ;a b2 ≥ ab (a,b∈ R 当且仅当 a =b时取等号 ) ;a3 b3 c3≥ 3abc(a,b,c∈ R 当且仅当 a =b =c时取等号 ) ;a b c3 ≥ 3 abc(a,b,c∈ R 当且仅当 a =b =c时取等号 )的应用技巧作一初步探讨。1 累用——重复使用并累加例 1 已知 a、b∈ R,求证 :a2 b2 1≥ a b ab分析 本题形如 :a2 b2 c2≥ ac bc ab(a,b,c∈ R)所以只需…  相似文献   

19.
构造一元二次方程解题是一种常用的解题方法,这种方法的关键是根据题目中的一些条件来构造一元二次方程,从而达到将问题化难为易、化繁为简的目的.下面举例说明:一、利用韦达定理的逆定理构造一元二次方程当题目中含有x1 x2=p、x1x2=q时,则可以利用韦达定理的逆定理构造一元二次方程来解决.例1已知a、b、c、d为实数,且满足2c-a=b,c2 14d2=ab,求证:a=b.证明:由已知a b=2c,ab=c2 14d2得a、b是方程x2-2cx c2 14d2=0的两根.∵a、b、c、d为实数,∴Δ=4c2-4(c2 14d2)=-d2≥0.∴d2≤0.又因为d2≥0,d2=0,即△=0.∴方程有两个相等实根,即a=b.二、利用…  相似文献   

20.
在实践中,某些看似繁杂的最值问题,若借助于最大(小)值的定义,常能轻松突破. 例1 分别用max{x1,x2,…,xn},min{x1,x2,…,xn}表示x1,x2,…,xn中的最大值与最小值,若a b c=1(a,b,c∈R),则min{max{a b,b c,c a}}的值为( ) (A)1/3.(B)2/3.(C)1.(D)不确定. 解 设max{a b,b c,c a}=x,则 x≥a b,x≥b c,x≥c a,所以 3x≥2(a b c)=2,x≥2/3. (当且仅当a b=b c=c a,且a b c=1,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号