首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2001年江苏省第十五届初中数学竞赛第二试初二第17题为:如图1,△ABC中,AC=BC,∠ACB=90°D是AC上一点,AE⊥BD交BD的延长线于E,且AE=1/2BD,求证:BD是∠ABC的角平分线.  相似文献   

2.
1.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证BC⊥BD,且BC=BD。 分析:根据题目要求,画出图形如图1。欲证BC⊥BD且BC=BD,只需证△PCB≌△PDB,这是因为△ACB为等腰直角三角形,故∠ABC=45°,而此时∠DBP=45°.这样∠DBC=45° 45°=90°故BC⊥BD.而BC=BD是显然的。以下给出证明。  相似文献   

3.
在1997年安徽省初中数学竞赛中,有这样一道题:例1如图1,在△ABC中,∠BAC=90°AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF.分析:过C作CM⊥AC交AF延长线于  相似文献   

4.
定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB,DE=ccosC  相似文献   

5.
例1 如图,Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于D,作CE⊥BD交BD的延长线于E,过A作AH⊥BC交BD于M,交BC于H,则BM与CE的大小关系是_______ . (第9届“希望杯”初二2试)  相似文献   

6.
题目:如图1,已知P为锐角△ABC内一点,过P分别作BC,AC,AB的垂线,垂足分别为D,E,F,BM为∠ABC的平分线,MP的延长线交AB于点N.如果PD=PE+PF,求证:CN是∠ACB的平分线.证法1:过N作NQ⊥AC于Q,NH⊥BC于H,过M作ML⊥AB于L,MR⊥BC于R,连NR交PD于G.因为BM平分∠ABC,所以ML=MR.又PF∥ML,PG∥  相似文献   

7.
“梯形”练习题中有这样一个问题:已知等腰梯形ABCD,AD//BC,对角AC⊥BD,AD=3cm,BC=7cm,求梯形的面积S.参考书中通常介绍如下三种作辅助线的方法(如图1).然而不作辅助线,是否也能求解呢?答案是肯定的.解法如下:如图2,因为ABCD是等腰梯形,所以AB=DC,∠ABC=∠DCB,又知BC=BC,所以△ABC≌△DCB(SAS),所以∠1=∠2,AC=BD,而AC⊥BD,所以∠1=∠2=45°,故△BOC等腰直角三角形.同理可知△AOD也为等腰直角三角形.由勾股定理得OA=OD=姨22AD=23姨2cm.OB=OC=姨22BC=7姨22cm.所以AC=OA OC=5姨2cm.于是S梯形ABCD=S△ABC S…  相似文献   

8.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

9.
在1993年西宁市中考数学试卷中,有这样一道题:已知在如图Rt△ABC中,∠BAC=90°,AD⊥BC,AE平分∠BAC。若AB=15cm,BD=9cm。求:(1)BC的长;(2)AC的长;(3)  相似文献   

10.
题目1:已知,如图1,在矩形 ABCD 中,点E,F 分别在 BC、CD 上,且 CE=AB,CF=BE求证:AE⊥EF.证明:由条件可得△ABE≌△ECF,所以∠1=∠2,又∠B ∠1 ∠3=180°,∠AEF ∠3 ∠2=180°,所以∠AEF=∠B=∠C=90°,所以 AE⊥EF.  相似文献   

11.
在全国众多的竞赛中,往往会遇到一些相似的题,但在同样的背景中,由于待求的问题不同,用到和得到的知识也不同. 例1 如图1,在△ABC中,∠A=90°,AB=AC,D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF. (97年安徽竞赛) 证明 作AH⊥BC于H,交BD于G. 在△BGA和△AFC中  相似文献   

12.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

13.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

14.
在几何解题中时常需要辅助线.在含有三角形中线条件的习题中倍长中线是一种重要的添加技巧,它可以将许多较为分散的条件相对集中,从而架设已知与未知的桥梁.现就倍长中线的方法举几例说明.例1如图1,△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.简析虽然AC、AB在同一个三角形中,但无法证得结论.想到BD=DC,即AD是中线,可倍长中线,即延长AD至E,使DE=AD,再连结BE,则易证得△BDE≌△CDA.于是∠E=∠CAD,BE=AC.而AD⊥AC,则∠E=90°.在Rt△AEB中,∠BAD=ABEDC图1CADEB图230°,所以BE=12AB,故AC=12AB.例2如图2,…  相似文献   

15.
正方形是我们最熟悉的几何图形之一·一些几何图形,若能根据题目所给条件,恰当地添补成正方形,则可收到事半功倍的解题效果·下面略举几例·例1△ABC中,AB=BC,∠ABC=90°,E在AB上,BM⊥CE交AC于M,且AE∶AB=999∶解29:91·求AM∶MC·如图1,以AC为对角线补出正方形ABCD,延长BM交AD于F·因为∠EBC=90°,BM⊥CE,所以∠1=∠2·又AB=BC,∠BAF=∠CBE=90°,所以△BAF≌△CBE·所以AF=BE·因为AF∥BC,所以MAMC=BAFC=BABE=ABA-BAE=1-9992991=21999912,故例2AM∶如M图C=2,1E99是2正∶29方91·形ABCD的对角线AC…  相似文献   

16.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

17.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

18.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

19.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

20.
例如图1,在△ABC中,∠ACB-90°,AC—BC,E为AC边的中点,从点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号