首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Because of their low cost, natural abundance, environmental benignity, plentiful polymorphs, good chemical stability and excellent optical properties, TiO2 materials are of great importance in the areas of physics, chemistry and material science. Much effort has been devoted to the synthesis of TiO2 nanomaterials for various applications. Among them, mesoporous TiO2 materials, especially with hierarchically porous structures, show great potential owing to their extraordinarily high surface areas, large pore volumes, tunable pore structures and morphologies, and nanoscale effects. This review aims to provide an overview of the synthesis and applications of hierarchically mesoporous TiO2 materials. In the first section, the general synthetic strategies for hierarchically mesoporous TiO2 materials are reviewed. After that, we summarize the architectures of hierarchically mesoporous TiO2 materials, including nanofibers, nanosheets, microparticles, films, spheres, core-shell and multi-level structures. At the same time, the corresponding mechanisms and the key factors for the controllable synthesis are highlighted. Following this, the applications of hierarchically mesoporous TiO2 materials in terms of energy storage and environmental protection, including photocatalytic degradation of pollutants, photocatalytic fuel generation, photoelectrochemical water splitting, catalyst support, lithium-ion batteries and sodium-ion batteries, are discussed. Finally, we outline the challenges and future directions of research and development in this area.  相似文献   

2.
Despite numerous advantages, applications of conventional microporous metal–organic frameworks (MOFs) are hampered by their limited pore sizes, such as in heterogeneous catalysis and guest delivery, which usually involve large molecules. Construction of hierarchically porous MOFs (HP-MOFs) is vital to achieve the controllable augmentation of MOF pore size to mesopores or even macropores, which can enhance the diffusion kinetics of guests and improve the storage capacity. This review article focuses on recent advances in the methodology of HP-MOF synthesis, covering preparation of HP-MOFs with intrinsic hierarchical pores, and modulated, templated and template-free synthetic strategies for HP-MOFs. The key factors which affect the formation of HP-MOF architectures are summarized and discussed, followed by a brief review of their applications in heterogeneous catalysis and guest encapsulation. Overall, this review presents a roadmap that will guide the future design and development of HP-MOF materials with molecular precision and mesoscopic complexity.  相似文献   

3.
Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g–1 at 1 C (1 C = 335 mA g–1) at a voltage window of 1.0–3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g–1, respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.  相似文献   

4.
Marine diatoms construct their hierarchically ordered, three-dimensional (3D) external structures called frustules through precise biomineralization processes. Recapitulating the remarkable architectures and functions of diatom frustules in artificial materials is a major challenge that has important technological implications for hierarchically ordered composites. Here, we report the construction of highly ordered, mineralized composites based on fabrication of complex self-supporting porous structures—made of genetically engineered amyloid fusion proteins and the natural polysaccharide chitin—and performing in situ multiscale protein-mediated mineralization with diverse inorganic materials, including SiO2, TiO2 and Ga2O3. Subsequently, using sugar cubes as templates, we demonstrate that 3D fabricated porous structures can become colonized by engineered bacteria and can be functionalized with highly photoreactive minerals, thereby enabling co-localization of the photocatalytic units with a bacteria-based hydrogenase reaction for a successful semi-solid artificial photosynthesis system for hydrogen evolution. Our study thus highlights the power of coupling genetically engineered proteins and polysaccharides with biofabrication techniques to generate hierarchically organized mineralized porous structures inspired by nature.  相似文献   

5.
6.
Tremendous efforts have been dedicated to developing high-performance energy storage devices based on the micro- or nano-manipulation of novel carbon electrodes, as certain nanocarbons are perceived to have advantages such as high specific surface areas, superior electric conductivities, excellent mechanical properties and so on. In typical electrochemical electrodes, ions are intercalated/deintercalated into/from the bulk (for batteries) or adsorbed/desorbed on/from the surface (for electrochemical capacitors). Fast ionic transport, significantly determined by ionic channels in active electrodes or supporting materials, is a prerequisite for the efficient energy storage with carbons. In this report, we summarize recent design strategies for ionic channels in novel carbons and give comments on the promising features based on those carbons towards tailorable ionic channels.  相似文献   

7.
张军  戴炜轶  马廷灿 《现代情报》2016,36(9):142-150
新能源技术的不断发展对大规模储能技术提出更高的要求,钠硫电池作为一种备受关注的电化学储能技术,具有良好的性能与经济效益。本文以钠硫电池为研究对象,旨在通过对钠硫电池储能技术相关专利的分析,梳理并总结钠硫电池领域中技术研发重点与专利分布特点。专利数据来源于DII数据库中钠硫电池储能领域的全球专利。在调研钠硫电池研发概况的基础上,利用TDA和Innography工具,从专利申请总体态势、技术主题、主要国家/地区分布、重要专利权人等方面,对钠硫电池相关专利展开分析。最后,就我国钠硫电池储能技术的发展提出建议。  相似文献   

8.
Bio-sourced nanocellulosic materials are promising candidates for spinning high-performance sustainable macrofibers for advanced applications. Various strategies have been pursued to gain nanocellulose-based macrofibers with improved strength. However, nearly all of them have been achieved at the expense of their elongation and toughness. Inspired by the widely existed hierarchical helical and nanocomposite structural features in biosynthesized fibers exhibiting exceptional combinations of strength and toughness, we report a design strategy to make nanocellulose-based macrofibers with similar characteristics. By combining a facile wet-spinning process with a subsequent multiple wet-twisting procedure, we successfully obtain biomimetic hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers, realizing impressive improvement in their tensile strength, elongation and toughness simultaneously. The achievement certifies the validity of the bioinspired hierarchical helical and nanocomposite structural design proposed here. This bioinspired design strategy provides a potential platform for further optimizing or creating many more strong and tough nanocomposite fiber materials for diverse applications.  相似文献   

9.
This paper reviews our work on the application of ultrafast pulsed laser micro∕nanoprocessing for the three-dimensional (3D) biomimetic modification of materials surfaces. It is shown that the artificial surfaces obtained by femtosecond-laser processing of Si in reactive gas atmosphere exhibit roughness at both micro- and nanoscales that mimics the hierarchical morphology of natural surfaces. Along with the spatial control of the topology, defining surface chemistry provides materials exhibiting notable wetting characteristics which are potentially useful for open microfluidic applications. Depending on the functional coating deposited on the laser patterned 3D structures, we can achieve artificial surfaces that are (a) of extremely low surface energy, thus water-repellent and self-cleaned, and (b) responsive, i.e., showing the ability to change their surface energy in response to different external stimuli such as light, electric field, and pH. Moreover, the behavior of different kinds of cells cultured on laser engineered substrates of various wettabilities was investigated. Experiments showed that it is possible to preferentially tune cell adhesion and growth through choosing proper combinations of surface topography and chemistry. It is concluded that the laser textured 3D micro∕nano-Si surfaces with controllability of roughness ratio and surface chemistry can advantageously serve as a novel means to elucidate the 3D cell-scaffold interactions for tissue engineering applications.  相似文献   

10.
Soft robotics with new designs, fabrication technologies and control strategies inspired by nature have been totally changing our view on robotics. To fully exploit their potential in practical applications, untethered designs are preferred in implementation. However, hindered by the limited thermal/mechanical performance of soft materials, it has been always challenging for researchers to implement untethered solutions, which generally involve rigid forms of high energy-density power sources or high energy-density processes. A number of insects in nature, such as rove beetles, can gain a burst of kinetic energy from the induced surface-energy gradient on water to return to their familiar habitats, which is generally known as Marangoni propulsion. Inspired by such a behavior, we report the agile untethered mobility of a fully soft robot in liquid based on induced energy gradients and also develop corresponding fabrication and maneuvering strategies. The robot can reach a speed of 5.5 body lengths per second, which is 7-fold more than the best reported, 0.69 (body length per second), in the previous work on untethered soft robots in liquid by far. Further controlling the robots, we demonstrate a soft-robot swarm that can approach a target simultaneously to assure a hit with high accuracy. Without employing any high energy-density power sources or processes, our robot exhibits many attractive merits, such as quietness, no mechanical wear, no thermal fatigue, invisibility and ease of robot fabrication, which may potentially impact many fields in the future.  相似文献   

11.
储能技术在可再生能源并网及微电网、电网调峰提效、区域供能、电动汽车等应用中发挥着关键作用,是保障能源安全,落实节能减排,推动全社会绿色低碳发展的重大战略需求,对切实推进能源革命具有不可替代的作用。文章重点介绍具有重要市场前景的电化学储能技术,包括液流电池、锂离子电池、铅炭电池、钠基电池技术,并在分析电化学储能技术发展现状的基础上,阐述中国相关领域未来的发展战略。  相似文献   

12.
Room-temperature liquid metal is discovered to be capable of penetrating through macro- and microporous materials by applying a voltage. The liquid metal penetration effects are demonstrated in various porous materials such as tissue paper, thick and fine sponges, fabrics, and meshes. The underlying mechanism is that the high surface tension of liquid metal can be significantly reduced to near-zero due to the voltage-induced oxidation of the liquid metal surface in a solution. It is the extremely low surface tension and gravity that cause the liquid metal to superwet the solid surface, leading to the penetration phenomena. These findings offer new opportunities for novel microfluidic applications and could promote further discovery of more exotic fluid states of liquid metals.  相似文献   

13.
Covalent organic frameworks (COFs) have been at the forefront of porous-material research in recent years. With predictable structural compositions and controllable functionalities, the structures and properties of COFs could be controlled to achieve targeted materials. On the other hand, the predesigned structure of COFs allows fruitful postsynthetic modifications to introduce new properties and functions. In this review, the postsynthetic functionalizations of COFs are discussed and their impacts towards structural qualities and performances are comparatively elaborated on. The functionalization involves the formation of specific interactions (covalent or coordination/ionic bonds) and chemical reactions (oxidation/reduction reaction) with pendant groups, skeleton and reactive linkages of COFs. The chemical stability and performance of COFs including catalytic activity, storage, sorption and opto-electronic properties might be enhanced by specific postsynthetic functionalization. The generality of these strategies in terms of chemical reactions and the range of suitable COFs places them as a pivotal role for the development of COF-based smart materials.  相似文献   

14.
Decisions in thesaurus construction and use   总被引:1,自引:0,他引:1  
A thesaurus and an ontology provide a set of structured terms, phrases, and metadata, often in a hierarchical arrangement, that may be used to index, search, and mine documents. We describe the decisions that should be made when including a term, deciding whether a term should be subdivided into its subclasses, or determining which of more than one set of possible subclasses should be used. Based on retrospective measurements or estimates of future performance when using thesaurus terms in document ordering, decisions are made so as to maximize performance. These decisions may be used in the automatic construction of a thesaurus. The evaluation of an existing thesaurus is described, consistent with the decision criteria developed here. These kinds of user-focused decision-theoretic techniques may be applied to other hierarchical applications, such as faceted classification systems used in information architecture or the use of hierarchical terms in “breadcrumb navigation”.  相似文献   

15.
Natural biological systems are constantly developing efficient mechanisms to counter adverse effects of increasing human population and depleting energy resources. Their intelligent mechanisms are characterized by the ability to detect changes in the environment, store and evaluate information, and respond to external stimuli. Bio-inspired replication into man-made functional materials guarantees enhancement of characteristics and performance. Specifically, butterfly architectures have inspired the fabrication of sensor and energy materials by replicating their unique micro/nanostructures, light-trapping mechanisms and selective responses to external stimuli. These bio-inspired sensor and energy materials have shown improved performance in harnessing renewable energy, environmental remediation and health monitoring. Therefore, this review highlights recent progress reported on the classification of butterfly wing scale architectures and explores several bio-inspired sensor and energy applications.  相似文献   

16.
Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport.  相似文献   

17.
本文研究了水雾与浸没在多孔介质中的乙醇火焰间的相互作用。探讨了水雾喷射压力,燃料预燃时间以及多孔介质类型对水雾灭火规律的影响。实验结果表明燃料预燃时间相同时,水雾喷射压力越大,火焰区及燃料床内部的温度变化越快,火焰熄灭时间也越短。当水雾喷射压力相同时,预燃时间越长,火焰越容易被熄灭,此外多孔介质类型对水雾灭火效果有重要影响。  相似文献   

18.
李兴伟  吕华侨 《科研管理》2014,35(11):133-138
组织绩效提升是当前研发机构治理深化的重要方向,而不同渠道来源的经费及其所占比重对研究机构组织绩效的影响是不同的。财政项目资金整体预算分配方法是经费结构化治理深化背景下组织绩效提升的一种新尝试。通过分析研发机构组织绩效与经费结构化治理内在关系,重点借鉴德国弗朗霍夫和台湾工研院等国际著名研发机构在经费结构化治理经验,通过财政项目资金整体预算分配方法探索实现研发机构治理深化在预算决策机制方面的机制创新,实现提升研究机构组织绩效的目的。  相似文献   

19.
分布式储能的发展现状与趋势   总被引:5,自引:0,他引:5       下载免费PDF全文
储能技术是解决可再生能源间歇性和不稳定性、提高常规电力系统和区域能源系统效率、安全性和经济性的迫切需要,是发展"安全、高效、低碳"的能源技术、占领能源技术制高点的"战略必争领域",储能在分布式可再生能源应用与智能微网领域具有重大的战略需求、重要的研究价值和巨大的发展潜力。文章分析了分布式储能技术现状、技术创新及其发展对相关产业的带动,并结合分布式储能的技术与产业特点给出了发展储能技术的政策建议。  相似文献   

20.
基于层次分析法的专利分阶评价初选体系,对已公开的发明专利在专利权人、研究组织、竞争对手、专利保护和技术应用环节进行分阶数据筛选,对应不同阶段提取具有代表性的客观数据,对相关科研院所进行实证研究;针对广东省“双十”战略性产业集群,利用层次分析法对上述七个细分指标分配权重进行测度,挖掘相关应用研究领域人才,为科技服务平台提供分级分类人才数据资源池,促进应用研究人才库和企业技术需求库相匹配。通过专利数据资源的梳理,打通知识产权创造、运用、保护、管理和服务全链条,在技术成果转化过程中提供新思路和新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号