首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活性炭是一种多孔性物质.具有高度发达的孔隙构造和巨大的表面积.每克活性炭的吸附面积相当于八个网球场之大.是世界公认的一种最优良的吸附剂。由于活性炭表面上含有多元素含氧官能团.还可以浸渍化学物质.制成浸渍活性炭。因此,它既是优良的吸附剂.也是催化剂、催化剂载体。活性炭自问世一百多年来被广泛地应用于环保、食品、医药、石油天然气、化工、冶金、电力、纺织等领域,进行水处理、气体净化、脱色、除味、医疗等多种应用。下面简单介绍活性炭的主要用途.  相似文献   

2.
以氯化铜为铜源,以活性炭为载体,通过浸渍法制备得到CuC12/AC负载型催化剂。考察了浸渍液质量分数、浸渍时间、浸渍液与活性炭的质量比(简称浸渍比,下同)对活性炭碘吸附值的影响,采用响应面法的中心组合设计进行工艺参数优化。实验得出最佳工艺参数为:氯化铜溶液质量分数为20%,浸渍时间为60min、浸渍比为5.0,最优条件下制备的载铜活性炭的碘吸附值为651.50mg/g。对模型进行检验,验证其数学模型的有效性。  相似文献   

3.
为加深学生对碳排放、碳中和在化学工程与能源利用领域的理解,设计了一个完全基于生物质资源的活性炭制备与吸附性能探究综合性实验.以生物质热解液替代常规化学品(如磷酸、氢氧化钾或氯化锌等)作为活化剂,以玉米芯或核桃壳为原料制备活性炭,并对其吸附性能进行研究.结果表明:浸渍时间对活性炭吸附量影响不大,浸渍比对玉米芯基活性炭吸附...  相似文献   

4.
以磷酸溶液:花生壳质量比为1.5:1的磷酸浸渍花生壳。在300℃~900℃的炭化温度制备生物质活性炭;用自制的活性炭吸附水溶液中的硝基苯。并从磷酸浸渍比、炭化温度、吸附时间、吸附温度、溶液的pH值几方面考查对其吸附的影响。结果表明,磷酸浸渍比为30%、炭化温度为800℃、吸附时间为80~90 min、吸附温度为15℃、溶液pH为6~8时条件下的吸附效果最好。硝基苯的吸附去除率为90.06%、吸附量为45.03 mg.g-1。  相似文献   

5.
采用磷酸浸渍葵花籽壳在350850℃的炭化温度下制备生物质活性炭并用自制的生物质活性炭吸附水溶液中的硝基苯.通过对磷酸浸渍比、磷酸浓度、炭化温度、溶液的p H值、吸附时间、吸附温度对吸附结果的影响等因素的研究,得到在磷酸浸渍比为2:1、磷酸浓度为50%、炭化温度为650℃条件下制得的活性炭比表面积达到1494.883 m2·g-1;在吸附时间110 min、吸附温度为20℃、溶液p H为7的条件下其对水溶液中的硝基苯有最佳吸附效果.硝基苯的吸附去除率可达到95.82%、吸附量达到47.91 mg·g-1.  相似文献   

6.
利用以白芍秸秆废料为原料,采用磷酸活化法制备活性炭,研究了磷酸浓度、浸渍时间、炭化温度和炭化时间对白芍秸秆活性炭产品碘吸附值、亚甲基蓝吸附值和收率的影响。在最佳工艺条件下,所制备的活性炭的比表面积达到677.7 m2/g,对碘的吸附值为1098.6 mg/g,亚甲基蓝的吸附值为316.4 mg/g,收率为60.5%。  相似文献   

7.
活性炭优良的吸附性能使其在废水处理中得以广泛应用.详细阐述了活性炭吸附在含铬废水、含氰废水,含酚废水等多种废水中的应用研究,并介绍了改性活性炭,活性炭纤维和活性炭与其他水处理技术的联用.  相似文献   

8.
采用氨水浸渍法对果壳活性炭进行改性处理,讨论不同氨水浓度(5%、10%、15%、20%)对果壳活性炭结构及性能的影响。采用场发射扫描电镜、比表面及孔径分析仪及紫外分光光度计对改性后的果壳活性炭结构及吸附性能进行研究。结果表明:氨水浓度对果壳活性炭的结构及吸附性能有显著影响,当氨水浓度为10%时,活性炭表面形态清晰,凹槽分布均匀,比表面积提高至775.1382m2/g,较改性前提高了6.5%;改性前后活性炭微孔孔径集中分布在3.5 nm;果壳活性炭的吸附率随氨水浓度的变化而变化,当氨水浓度为10%和15%时,吸附率分别达到86.51%和86.54%,吸附率相比改性前有所提高。而当氨水浓度进一步增加时,活性炭对苯酚的吸附率略微下降。  相似文献   

9.
改性活性炭吸附SO2的试验研究   总被引:1,自引:0,他引:1  
采用浸渍法改性活性炭对SO2废气脱硫进行实验研究,结果表明: 分别经过KI、 Zn(NO3)2、HNO3改性的活性炭吸附效果较好.在吸附温度25 ℃, SO2浓度2900ppm,空速0.26m/s,吸附剂用量为2g的条件下,经KI、 Zn(NO3)2、HNO3改性的活性炭吸附能力分别提高了116%、25%和16.7%.  相似文献   

10.
以废弃的羊肚菌菌棒为原料,ZnCl_2为活化剂制备废弃菌棒活性炭.考察了废弃菌棒在不同条件下制备的活性炭的吸附性能.结果表明:在质量浸渍比为30%、炭化时间为45 min、炭化温度为500℃时制备的活性炭碘吸附值最大,为720 mg/g.通过比表面积分析仪对改性前后制备的活性炭的比表面积进行测定,改性后的活性炭比表面积大幅度提升,达到657.5 m2/g.  相似文献   

11.
本研究以微波活化的方法制备脐橙皮渣活性炭,采用正交法探讨活化剂浓度、料液比、浸泡时间、微波辐照时间等因素对活性炭碘吸附值和亚甲基蓝吸附值的影响.结果显示:不同的因素对活性炭不同孔隙形成的影响不同;脐橙皮渣活性炭微波活化的较优制备条件为氢氧化钠浓度30%、料液比1∶6、浸渍时间24 h、微波功率700 W、微波辐照时间10 min,在该条件下,脐橙皮渣活性炭碘吸附值和亚甲基蓝吸附值为1 523.5 mg/g和390.0 mg/g.  相似文献   

12.
1原理 SO2是一种易液化的气体(常压下沸点是-10℃),也容易被活性炭吸附。若把吸附有SO2的活性炭封在玻璃管里,可以利用它的热离解平衡实现SO2的解吸和吸附。  相似文献   

13.
以聚丙烯腈基活性炭纤维(PAN-ACF)为吸附剂,分别进行空气热氧化、硝酸浸渍、过氧化氢浸渍改性处理,对改性处理的PAN-ACF样品进行表征,包括SEM表面形态、比表面积BET、傅里叶变换红外线光谱(FTIR)表面基团以及总表面酸性基团;研究对痕量六价铬的吸附效果,分析PAN-ACF改性对吸附容量的影响。经过过氧化氢浸渍改性处理的ACF3炭微晶尺度变小,导致结构无序化,较大地提升了比表面积,但表面含氧官能团增势不明显;其对微污染水中六价铬的吸附效果最佳,吸附等温线相对于Langmuir方程,更符合Freundlich方程。  相似文献   

14.
采用H_3PO_4和Na OH为活化剂制备脐橙皮渣活性炭,从吸附时间、p H值、初始浓度、活性炭用量等因素研究两种活性炭对水中Cr(Ⅵ)的吸附性能.研究结果表明,碱法活化的活性炭吸附性能好于酸法活化的活性炭,两种活性炭对Cr(Ⅵ)的吸附可能都属于多分子层吸附,但碱法的活性位点更多.两种活性炭的最佳吸附条件分别为:酸法p H值:3.0,吸附时间:4 h,活性炭投入量:0.03 g,初始浓度:10 mg/l;碱法p H值:2.0,吸附时间:7 h,活性炭投入量:0.02 g,初始浓度:10 mg/l.  相似文献   

15.
研究采用机械力化学辅助作用下制备高吸附性能木质活性炭,探讨了研磨时间、浸渍比(磷酸与绝干杉木屑的质量之比,下同)、磷酸浓度对所制备活性炭的碘吸附值和亚甲基蓝吸附值的影响;同时,采用比表面积及孔隙分析仪和傅立叶红外光谱仪(FT-IR)对活性炭的表面官能团、比表面积、孔容及孔径分布等进行了表征.分析显示:经过机械力化学辅助作用处理后,机械力化学激活作用有利于木屑与磷酸之间发生更多的化学反应,同时促进更多纤维素发生热解;此外,机械力化学辅助作用可能降低了纤维素热解过程中聚合及芳构化阶段的温度;通过N2吸附等温线分析表明机械力化学法所制备活性炭具有丰富的微孔结构.  相似文献   

16.
本研究采用常压制备的工艺,制备出菱角壳活性炭,对其进行磷吸附动力学及等温线实验的研究。结果表明,吸附过程速率主要由孔隙内扩散控制,准二级反应动力学模型和Langmuir模型分别较好地描述了菱角壳活性炭对磷的吸附过程和菱角壳活性炭对磷吸附等温曲线,菱角壳活性炭对磷饱和吸附量拟合值达26.67 mg/g,能有效吸附富营养化水体中95%以上的磷,吸附能力良好。菱角壳活性炭作为一种易得、廉价、高效的吸附剂,在合理回收和解决富营养水体问题方面具有良好的应用前景。  相似文献   

17.
花生壳活性炭对溶液中亚甲基蓝和亮绿的吸附   总被引:2,自引:1,他引:1  
以磷酸法活化制备的花生壳活性炭是一种廉价、有效的吸附剂,可用于染料溶液吸附脱色.实验测定了亚甲基蓝和亮绿在花生壳活性炭上的吸附特性,结果表明,两种染料在花生壳活性炭上的吸附等温线符合Langmuir等温式,其中亚甲基蓝和亮绿的饱和吸附量分别为596mol/L和528mol/L,吸附平衡常数分别为0.328L/mol和0.103L/mol,吸附过程遵从假二级吸附动力学模型.在亚甲基蓝与亮绿的混合溶液中,当吸附剂的投加量不足时,亚甲基蓝优先吸附.  相似文献   

18.
活性炭具有优良的吸附性和还原性,已广泛用于废水处理工业.采用静态试验的方法,考察了活性炭加入量、吸附时间、pH值、温度等因素对含Cr(Ⅵ)废水去除率的影响.研究表明活性炭的投加量为0.6g/mL,pH为4,吸附时间为150min,温度为20时℃时铬的去除率为97%.在适宜的条件下,活性炭可以较好的去除废水中的Cr(Ⅵ).  相似文献   

19.
花生壳活性炭吸附苯酚及对硝基苯酚   总被引:1,自引:0,他引:1  
以花生壳为原料所制备的活性炭对酚有良好的吸附能力,实验测定了苯酚、对硝基苯酚在活性炭上的吸附特性.结果表明,两种酚在活性炭上的吸附等温线可用Freundlich或Langmuir等温式分析,吸附动力学曲线可用假一级或假二级动力学模型拟合.在苯酚与对硝基苯酚的混合溶液中,当活性炭投加量不足时,两种酚之间存在竞争吸附机制,对硝基苯酚的吸附平衡常数大,因而优先吸附,混合酚的总吸附量与总平衡浓度、吸附时间的关系与单一酚溶液中的吸附类似.  相似文献   

20.
(一)前言 当前在电力电容器生产中常用两种浸渍剂即矿物油和三氯联苯。矿物油虽有优良的电气性能,但介绍常数太低(ε=2.2),生产的电容器单台容量小,比特性差;三氯联苯是一种合成介质,性能良好,介电常数也较大(ε=4~5),为国内外广泛采用,但此种浸渍剂有个致命弱点,就是容易造成积累性的肝脏中毒,严重危害人体健康。 为了提高器容器的容量,国外曾有人用硝基苯作为浸渍剂但净化条件苛刻,一般不易做到。我们认为硝化十二烷基苯介电常数大(s=11~12),毒性较少;若能加入适当的稳定剂(或吸附刑)防止其老化变质,就有可能运用到电力电容器实际生产中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号