首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of the present study were to assess running economy in track runners and orienteers and to identify the factors responsible for any differences. The participants were 11 orienteers and 10 track runners of similar age, body mass, maximal oxygen uptake and training background. However, the orienteers included heavy terrain running in their daily training, whereas the track runners ran almost entirely on the roads and tracks. Maximal oxygen uptake and running economy were calculated during horizontal path running and during cross-country running in rough terrain with steep hills, using a telemetric system (K2, Cosmed, Italy). Running economy during path running was 217+/-12 and 212+/-14 ml x kg(-1) x km(-1) (mean +/- s) in the orienteers and the track runners, respectively. Running economy was impaired by 41-52% in heavy terrain (P < 0.05), and was less pronounced in the orienteers than in the track runners (88+/-18 vs 109+/-26 ml x kg(-1) x km(-1); P < 0.05). In conclusion, the better running economy of orienteers when changing from horizontal path to heavy terrain running could be an innate ability, or it could be speculated that specific training may improve running economy, indicating the importance of specific training for orienteers.  相似文献   

2.
The purpose of the present study was to re-examine the relationship between deep body temperature and relative exercise intensity, during running rather than cycling (Saltin and Hermansen, 1966). Twenty male competitive and recreational distance runners, aged 22 + 0.9 years (mean +/- sx), were selected to form two groups, one with high maximal oxygen uptake (VO2max) values (72.8 +/- 0.8 ml x kg(-1) x min(-1)) and the other with moderate values (59.4 +/- 0.7 ml x kg(-1) x min(-1)). The participants completed two 60 min constant-paced treadmill runs at a common speed (absolute intensity) of 10.5 km x h(-1) and at a relative exercise intensity at a speed equivalent to 65% of VO2max. During the relative exercise intensity trial, no differences were found in rectal temperature, skin temperature or heart rate between groups. However, when running at the common speed, differences were identified in rectal temperature. At 60 min, rectal temperature was 37.70 +/- 0.19 degrees C and 38.19 +/- 0.11 degrees C for the high and moderate VO2max groups, respectively (P < 0.05). Sweat lost was significantly higher in the moderate VO2max group (moderate: 1.05 +/- 0.06 kg x h(-1); high: 0.82 +/- 0.08 kg x h(-1); P < 0.05). Heart rates were also different between groups over the first 20 min during the common speed trial (P < 0.05). The results of the present study support the findings of Saltin and Hermansen (1966), in that the set-point at which temperature is maintained is related to the relative exercise intensity.  相似文献   

3.
Abstract

The purpose of this study was to assess the relationships among ventilatory threshold T(vent), running economy and distance running performance in a group (N=9) of trained experienced male runners with comparable maximum oxygen uptake ([Vdot]O2 max). Maximal oxygen uptake and submaximal steady state oxygen uptake were measured using open circuit spirometry during treadmill exercise. Ventilatory threshold was determined during graded treadmill exercise using non-invasive techniques, while distance running performance was assessed by the best finish time in two 10-kilometer (km) road races. The subjects averaged 33.8 minutes on the 10km runs, 68.6 ml · kg -1 · min -1 for [Vdot]O2 max, and 48.1 ml · kg -1 · min -1 for steady state [Vdot]O2 running at 243 meters · min -1. The T(vent) (first deviation from linearity of [Vdot]E, [Vdot]CO 2 ) occurred at an oxygen consumption of 41.9 ml · kg -1 · min -1. The relationship between running economy and performance was r = .51 (p>0.15) and the relationship between T(vent) and performance was r = .94 (p < 0.001). Applying stepwise multiple linear regression, the multiple R did not increase significantly with the addition of variables to the T(vent); however, the combination of [Vdot]O2 max, running economy and T(vent) was determined to account for the greatest amount of total variance (89%). These data suggest that among trained and experienced runners with similar [Vdot]O2 max, T(vent) can account for a large portion of the variance in performance during a 10km race.  相似文献   

4.
The aim of this study was to determine which physiological variables predict excellence in middle- and long-distance runners. Forty middle-distance runners (age 23 ± 4 years, body mass 67.2 ± 5.9 kg, stature 1.80 ± 0.05 m, VO(2max) 65.9 ± 4.5 ml · kg(-1) · min(-1)) and 32 long-distance runners (age 25 ± 4 years, body mass 59.8 ± 5.1 kg, stature 1.73 ± 0.06 m, VO(2max) 71.6 ± 5.0 ml · kg(-1) · min(-1)) competing at international standard performed an incremental running test to exhaustion. Expired gas analysis was performed breath-by-breath and maximum oxygen uptake (VO(2max)) and two ventilatory thresholds (VT(1) and VT(2)) were calculated. Long-distance runners presented a higher VO(2max) than middle-distance runners when expressed relative to body mass (P < 0.001, d = 1.18, 95% CI [0.68, 1.68]). At the intensities corresponding to VT(1) and VT(2), long-distance runners showed higher values for VO(2) expressed relative to body mass or %VO(2max), speed and oxygen cost of running (P < 0.05). When oxygen uptake was adjusted for body mass, differences between groups were consistent. Logistic binary regression analysis showed that VO(2max) (expressed as l · min(-1) and ml · kg(-1) · min(-1)), VO(2VT2) (expressed as ml · kg(-0.94) · min(-1)), and speed at VT(2) (v(VT2)) categorized long-distance runners. In addition, the multivariate model correctly classified 84.7% of the athletes. Thus, VO(2max), VO(2VT2), and v(VT2) discriminate between elite middle-distance and long-distance runners.  相似文献   

5.
Traditionally, it has been assumed that during middle-distance running oxygen uptake (VO2) reaches its maximal value (VO2max) providing the event is of a sufficient duration; however, this assumption is largely based on observations in individuals with a relatively low VO2max. The aim of this study was to determine whether VO2max is related to the VO2 attained (i.e. VO2peak) during middle-distance running on a treadmill. Fifteen well-trained male runners (age 23.3 +/- 3.8 years, height 1.80 +/- 0.10 m, body mass 76.9 +/- 10.6 kg) volunteered to participate in the study. The participants undertook two 800-m trials to examine the reproducibility of the VO2 response. These two trials, together with a progressive test to determine VO2max, were completed in a randomized order. Oxygen uptake was determined throughout each test using 15-s Douglas bag collections. Following the application of a 30-s rolling average, the highest VO2 during the progressive test (i.e. VO2max) was compared with the highest VO2 during the 800-m trials (i.e. VO2peak) to examine the relationship between VO2max and the VO2 attained in the 800-m trials. For the 15 runners, VO2max was 58.9 +/- 7.1 ml x kg(-1) x min(-1). Two groups were formed using a median split based on VO2max. For the high and low VO2max groups, VO2max was 65.7 +/- 3.0 and 52.4 +/- 1.8 ml x kg(-1) x min(-1) respectively. The limits of agreement (95%) for test-retest reproducibility for the VO2 attained during the 800-m trials were +/- 3.5 ml x kg(-1) x min(-1) for a VO2peak of 50.6 ml x kg(-1) x min(-1) (the mean VO2peak for the low VO2max group) and +/- 2.3 ml x kg(-1) x min(-1) for a VO2peak of 59.0 ml x kg(-1) x min(-1) (the mean VO2peak for the high VO2max group), with a bias in VO2peak between the 800-m runs (i.e. the mean difference) of 1.2 ml x kg(-1) x min(-1). The VO2peak for the 800-m runs was 54.8 +/- 4.9 ml x kg(-1) x min(-1) for all 15 runners. For the high and low VO2max groups, VO2peak was 59.0 +/- 3.3 ml x kg(-1) x min(-1) (i.e. 90% VO2max) and 50.6 +/- 2.0 ml x kg(-1) x min(-1) (i.e. 97% VO2max) respectively. The negative relationship (-0.77) between VO2max and % VO2max attained for all 15 runners was significant (P = 0.001). These results demonstrate that (i) reproducibility is good and (ii) that VO2max is related to the %VO2max achieved, with participants with a higher VO2max achieving a lower %VO2max in an 800-m trial on a treadmill.  相似文献   

6.
The aim of this study was to examine the acute effects of prolonged static stretching (SS) on running economy. Ten male runners (VO2(peak) 60.1 +/- 7.3 ml x kg(-1) x min(-1)) performed 10 min of treadmill running at 70% VO2(peak) before and after SS and no stretching interventions. For the stretching intervention, each leg was stretched unilaterally for 40 s with each of eight different exercises and this was repeated three times. Respiratory gas exchange was measured throughout the running exercise with an automated gas analysis system. On a separate day, participants were tested for sit and reach range of motion, isometric strength and countermovement jump height before and after SS. The oxygen uptake, minute ventilation, energy expenditure, respiratory exchange ratio and heart rate responses to running were unaffected by the stretching intervention. This was despite a significant effect of SS on neuromuscular function (sit and reach range of motion, +2.7 +/- 0.6 cm; isometric strength, -5.6% +/- 3.4%; countermovement jump height -5.5% +/- 3.4%; all P < 0.05). The results suggest that prolonged SS does not influence running economy despite changes in neuromuscular function.  相似文献   

7.
Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the low-intensity (62.4 +/- 4.5 vs. 62.1 +/- 4.0 ml/min/kg, p > 0.05) and high-intensity (63.4 +/- 3.5 vs. 63.3 +/- 4.3 ml/min/kg, p > 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.  相似文献   

8.
The aim of this study was to determine the physiological responses to orienteering by examining the interrelationships between the information provided by a differential global positioning system (dGPS) about an orienteer's route, speed and orienteering mistakes, portable metabolic gas analyser data during orienteering and data from incremental treadmill tests. Ten male orienteers completed a treadmill threshold test and a field test; the latter was performed on a 4.3 km course on mixed terrain with nine checkpoints. The anaerobic threshold, threshold of decompensate . dmetabolic acidosis, respiratory exchange ratio, onset of blood lactate accumulation and peak oxygen uptake (V O2peak ) were determined from the treadmill test. Time to complete the course, total distance covered, mean speed, distance and timing of orienteering mistakes, mean oxygen uptake, mean relative heart rate, mean respiratory exchange ratio and mean running economy were computed from the dGPS data and metabolic gas analyser data. Correlation analyses showed a relationship between a high anaerobic threshold a . nd few orienteering mistakes ( r = - 0.64, P ? 0.05). A high threshold of decompensated metabolic acidosis and V O2peak were related to a fast overall time ( r = - 0.70 to- 0.72, P ? 0.05) and high running speed ( r = 0.64 to 0.79, P ? 0.05 and P ? 0.01, respectively), and were thus the best predictors of performance.  相似文献   

9.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(?max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(?max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

10.
The aim of this study was to determine the physiological responses to orienteering by examining the interrelationships between the information provided by a differential global positioning system (dGPS) about an orienteer's route, speed and orienteering mistakes, portable metabolic gas analyser data during orienteering and data from incremental treadmill tests. Ten male orienteers completed a treadmill threshold test and a field test; the latter was performed on a 4.3 km course on mixed terrain with nine checkpoints. The anaerobic threshold, threshold of decompensated metabolic acidosis, respiratory exchange ratio, onset of blood lactate accumulation and peak oxygen uptake (VO2peak) were determined from the treadmill test. Time to complete the course, total distance covered, mean speed, distance and timing of orienteering mistakes, mean oxygen uptake, mean relative heart rate, mean respiratory exchange ratio and mean running economy were computed from the dGPS data and metabolic gas analyser data. Correlation analyses showed a relationship between a high anaerobic threshold and few orienteering mistakes (r = - 0.64, P < 0.05). A high threshold of decompensated metabolic acidosis and VO2peak were related to a fast overall time (r = -0.70 to -0.72, P < 0.05) and high running speed (r = 0.64 to 0.79, P < 0.05 and P < 0.01, respectively), and were thus the best predictors of performance.  相似文献   

11.
郜卫峰 《体育科学》2012,32(5):49-57
目的:利用便携式肺功能仪,在场地条件下测试中跑运动员4种次极限跑速时的跑步经济性(RE),比较以时间耗氧(ml/kg/min)、距离耗氧(ml/kg/km)和距离耗能(kcal/kg/km)单位评价RE的有效性。方法:10名中跑运动员在标准田径场跑道上完成1次递增负荷测试和1次持续4个回合的恒定负荷测试。通过递增负荷测试获取最大耗氧量(VO2max)和无氧阈(AT),并分别以70%、80%、90%、105%AT强度完成5~10min恒定负荷测试,取稳态耗氧量及相关呼吸指标计算3种不同单位表示时的RE。结果:3种单位表示的RE在两两间均呈现出非常显著的相关关系(P<0.01)。随运动强度的增高,单位时间的耗氧在每级间均显著增高(P<0.05);单位距离的耗氧则无明显变化(P>0.05),且在80%~105%AT强度间出现微弱的降低;单位距离的能耗在70%~90%AT间缓慢增高(P>0.05),但在90%~105%AT间增高显著(P<0.05);呼吸交换率(RER)则在80%~105%AT间出现了不同程度地显著提高(80%~90%AT:P<0.05,90%~105%AT:P<0.01)。结论:无论是时间耗氧单位还是距离耗氧单位,都忽略了底物利用的不同对耗氧量的影响,无法有效评定RE。能量单位更符合RE的本质特征,与运动实践更加相关,是评定RE的有效单位。  相似文献   

12.
Six games players (GP) and six endurance-trained runners (ET) completed a standardized multiple sprint test on a non-motorized treadmill consisting of ten 6-s all-out sprints with 30-s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 +/- 114 vs 777 +/- 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 +/- 0.3 vs 6.71 +/- 0.3 m s-1, N.S.), but had a greater decrement in mean power output than endurance-trained runners (GP vs ET: 29.3 +/- 8.1% vs 14.2 +/- 11.1%, P less than 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 +/- 1.9 vs 12.4 +/- 1.7 mM, P less than 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 +/- 0.08 vs 0.28 +/- 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P less than 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P less than 0.01). The average increase in oxygen uptake above pre-exercise levels during the sprint test was greater for endurance-trained athletes than for the games players (ET vs GP: 35.0 +/- 2.2 vs 29.6 +/- 3.0 ml kg-1 min-1, P less than 0.05), corresponding to an average oxygen uptake per sprint (6-s sprint and 24 s of subsequent recovery) of 67.5 +/- 2.9% and 63.0 +/- 4.5% VO2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre-exercise values during the sprint test and mean speed fatigue (r = -0.68, P less than 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

13.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

14.
It is common for the physiological working capacity of a triathlete when cycling and running to be assessed on two separate days. The aim of this study was to establish whether an incremental running test to exhaustion has a negative effect after a 5 h recovery from an incremental cycling test. Eight moderately trained triathletes (age, 26.2 +/- 3.4 years; body mass, 67.3 +/- 9.1 kg; VO2max when cycling, 59 +/- 13 ml x kg x min(-1); mean +/- s) completed an incremental running test 5 h after an incremental cycling test (fatigue) as well as an incremental running test without previous activity (control). Maximum running speed, maximal oxygen uptake (VO2max) and the lactate threshold were determined for each incremental running test and correlated with the average speed during a 5 km run, which was performed immediately after a 20 km cycling time-trial, as in a sprint triathlon. There were no significant differences in maximum running speed, VO2max or the lactate threshold in either incremental running test (control or fatigue). Furthermore, good agreement was found for each physiological variable in both the control and fatigue tests. For the fatigue test, there were significant correlations between the average speed during a 5 km run and both VO2max expressed in absolute terms (r = 0.83) and the lactate threshold (r = 0.88). However, maximum running speed correlated most strongly with the average speed during a 5 km run (r = 0.96). The results of this study indicate that, under controlled conditions, an incremental running test can be performed successfully 5 h after an incremental cycling test to exhaustion. Also, the maximum running speed achieved during an incremental running test is the variable that correlates most strongly with the average running speed during a 5 km run after a 20 km cycling time-trial in well-trained triathletes.  相似文献   

15.
The aims of this study were to determine if there are significant kinematic changes in running pattern after intense interval workouts, whether duration of recovery affects running kinematics, and whether changes in running economy are related to changes in running kinematics. Seven highly trained male endurance runners (VO 2max = 72.3 +/- 3.3 ml kg -1 min -1 ; mean +/- s) performed three interval running workouts of 10 X 400 m at a speed of 5.94 +/- 0.19 m s -1 (356 +/- 11.2 m min -1 ) with a minimum of 4 days recovery between runs. Recovery of 60, 120 or 180 s between each 400 m repetition was assigned at random. Before and after each workout, running economy and several kinematic variables were measured at speeds of 3.33 and 4.47 m s -1 (200 and 268 m min -1 ). Speed was found to have a significant effect on shank angle, knee velocity and stride length (P ? 0.05). Correlations between changes pre- and post-test for VO 2 (ml kg -1 min -1 ) and several kinematic variables were not significant (P > 0.05) at both speeds. In general, duration of recovery was not found to adversely affect running economy or the kinematic variables assessed, possibly because of intra-individual adaptations to fatigue.  相似文献   

16.
This study aimed to quantify the intra-individual reliability of a number of physiological variables in a group of national and international young distance runners. Sixteen (8 male, 8 female) participants (16.7?±?1.4 years) performed a submaximal incremental running assessment followed by a maximal running test, on two occasions separated by no more than seven days. Maximal oxygen uptake (V?O2max), speed at V?O2max (km?h?1), running economy and speed and heart rate (HR) at fixed blood lactate concentrations were determined. V?O2max and running economy were scaled for differences in body mass using a power exponent derived from a larger cohort of young runners (n?=?42). Running economy was expressed as oxygen cost and energy cost at the speed associated with lactate turnpoint (LTP) and the two speeds prior to LTP. Results of analysis of variance revealed an absence of systematic bias between trials. Reliability indices showed a high level of reproducibility across all parameters (typical error [TE] ≤2%; intra-class correlation coefficient >0.8; effect size <0.6). Expressing running economy as energy cost appears to provide superior reliability than using oxygen cost (TE ~1.5% vs. ~2%). Blood lactate and HR were liable to daily fluctuations of 0.14–0.22?mmol?L?1 and 4–5?beats?min?1 respectively. The minimum detectable change values (95% confidence) for each parameter are also reported. Exercise physiologists can be confident that measurement of important physiological determinants of distance running performance are highly reproducible in elite junior runners.  相似文献   

17.
The aim of this study was to monitor longitudinal changes in young people's submaximal oxygen uptake (VO 2 ) responses during horizontal treadmill running at 8 km h -1 . The 236 participants (118 boys, 118 girls) were aged 11.2 +/- 0.4 years (mean +/- s) at the onset of the study. Submaximal VO 2 , peak VO 2 and anthropometry were recorded annually for three consecutive years. The data were analysed using multi-level regression modelling within a multiplicative, allometric framework. The initial model examined sex, age and maturity-related changes in submaximal VO 2 relative to body mass as the sole anthropometric covariate. Our results demonstrate that the conventional ratio standard ml kg -1 min -1 does not adequately describe the true relationship between body mass and submaximal VO 2 during this period of growth. The effects of maturity and age were non-significant, but girls consumed significantly less VO 2 than boys running at 8 km h -1 . In subsequent models, stature was shown to be a significant explanatory variable, but this effect became non-significant when the sum of two skinfolds was added. Thus, within this population, submaximal VO 2 responses were explained predominantly by changes in body mass and skinfold thicknesses, with no additional maturity-related increments. When differences in body mass and skinfolds were controlled for, there was still a difference between the sexes in submaximal VO 2 , with girls becoming increasingly more economical with age.  相似文献   

18.
The aims of this study were to determine if there are significant kinematic changes in running pattern after intense interval workouts, whether duration of recovery affects running kinematics, and whether changes in running economy are related to changes in running kinematics. Seven highly trained male endurance runners (VO2max = 72.3+/-3.3 ml x kg(-1) x min(-1); mean +/- s) performed three interval running workouts of 10 x 400 m at a speed of 5.94+/-0.19 m x s(-1) (356+/-11.2 m x min(-1)) with a minimum of 4 days recovery between runs. Recovery of 60, 120 or 180 s between each 400 m repetition was assigned at random. Before and after each workout, running economy and several kinematic variables were measured at speeds of 3.33 and 4.47 m x s(-1) (200 and 268 m x min(-1)). Speed was found to have a significant effect on shank angle, knee velocity and stride length (P < 0.05). Correlations between changes pre- and post-test for VO2 (ml x kg(-1) x min(-1)) and several kinematic variables were not significant (P > 0.05) at both speeds. In general, duration of recovery was not found to adversely affect running economy or the kinematic variables assessed, possibly because of intra-individual adaptations to fatigue.  相似文献   

19.
Longitudinal changes in submaximal oxygen uptake in 11- to 13-year-olds   总被引:3,自引:0,他引:3  
The aim of this study was to monitor longitudinal changes in young people's submaximal oxygen uptake (VO2) responses during horizontal treadmill running at 8 km x h(-1). The 236 participants (118 boys, 118 girls) were aged 11.2+/-0.4 years (mean +/- s) at the onset of the study. Submaximal VO2, peak VO2 and anthropometry were recorded annually for three consecutive years. The data were analysed using multi-level regression modelling within a multiplicative, allometric framework. The initial model examined sex, age and maturity-related changes in submaximal VO2 relative to body mass as the sole anthropometric covariate. Our results demonstrate that the conventional ratio standard ml x kg(-1) x min(-1) does not adequately describe the true relationship between body mass and submaximal VO2 during this period of growth. The effects of maturity and age were non-significant, but girls consumed significantly less VO2 than boys running at 8 km x h(-1). In subsequent models, stature was shown to be a significant explanatory variable, but this effect became non-significant when the sum of two skinfolds was added. Thus, within this population, submaximal VO2 responses were explained predominantly by changes in body mass and skinfold thicknesses, with no additional maturity-related increments. When differences in body mass and skinfolds were controlled for, there was still a difference between the sexes in submaximal VO2, with girls becoming increasingly more economical with age.  相似文献   

20.
The aim of this study was to assess the sensitivity of the lactate minimum speed test to changes in endurance fitness resulting from a 6 week training intervention. Sixteen participants (mean +/- s: age 23+/-4 years; body mass 69.7+/-9.1 kg) completed 6 weeks of endurance training. Another eight participants (age 23+/-4 years; body mass 72.7+/-12.5 kg) acted as non-training controls. Before and after the training intervention, all participants completed: (1) a standard multi-stage treadmill test for the assessment of VO2max, running speed at the lactate threshold and running speed at a reference blood lactate concentration of 3 mmol x l(-1); and (2) the lactate minimum speed test, which involved two supramaximal exercise bouts and an 8 min walking recovery period to increase blood lactate concentration before the completion of an incremental treadmill test. Additionally, a subgroup of eight participants from the training intervention completed a series of constant-speed runs for determination of running speed at the maximal lactate steady state. The test protocols were identical before and after the 6 week intervention. The control group showed no significant changes in VO2max, running speed at the lactate threshold, running speed at a blood lactate concentration of 3 mmol x l(-1) or the lactate minimum speed. In the training group, there was a significant increase in VO2max (from 47.9+/-8.4 to 52.2+/-2.7 ml x kg(-1) x min(-1)), running speed at the maximal lactate steady state (from 13.3+/-1.7 to 13.9+/-1.6 km x h(-1)), running speed at the lactate threshold (from 11.2+/-1.8 to 11.9+/-1.8 km x h(-1)) and running speed at a blood lactate concentration of 3 mmol x l(-1) (from 12.5+/-2.2 to 13.2+/-2.1 km x h(-1)) (all P < 0.05). Despite these clear improvements in aerobic fitness, there was no significant difference in lactate minimum speed after the training intervention (from 11.0+/-0.7 to 10.9+/-1.7 km x h(-1)). The results demonstrate that the lactate minimum speed, when assessed using the same exercise protocol before and after 6 weeks of aerobic exercise training, is not sensitive to changes in endurance capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号