首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的:用两次跑台试验法评定优秀女子拳击运动员无氧代谢能力.方法:以10名女子拳击运动员为研究对象,让受试者在Manark839E功率自行车上进行两次跑台运动实验,使用便携式血乳酸仪测量运动员在两次跑台运动后的血乳酸值.结果:第一次定量运动负荷后,△Lamax最大值为11.1mmol/L,最小值为6.93 mmol/L;第二次极限负荷强度下,最大血乳酸值出现在第5min和第3min,平均值分别是8.57 mmol/L和8.44 mmol/L.结论:定量负荷下血乳酸变化反映了拳击运动员ATP-CP储备水平;极量负荷下拳击运动员持续运动的时间以及最大血乳酸存在明显差异,能够反映运动员的无氧耐力水平.  相似文献   

2.
周新华 《体育学刊》2001,8(4):62-63
通过16名400~800m跑项目运动员在程控跑台上完成400m跑极量负荷使运动员机体内堆积大量的乳酸,然后分别测定各种不同强度的恢复性运动对血乳酸(HLa)清除速率的影响,观察了血乳酸清除速率与恢复性运动强度的关系,从中寻找快速清除血乳酸消除疲劳的最佳强度范围.实验结果表明清除血乳酸最快的强度为400m最大强度的50%~65%之间,心率在145~165次/min之间.研究表明,最佳恢复性运动强度是400m最大强度的60%,心率为150~160次/min,此时16名运动员的跑速为(4.21±0.67)m/s,与受试者的跑速无氧阈值(4.35±0.88)m/s无显著差异(P>0.05).  相似文献   

3.
对田径、赛艇运动员下肢等负荷多组力量训练强度的研究   总被引:1,自引:1,他引:0  
对43名2级以上运动员进行了50%/Fmax负重,20次/组,组间歇1min,共5组力量耐力测试。采集并测定安静和每组运动员练习后即刻的心率和血乳酸,测定了每一位受试对象每一次深蹲的蹲起速度。所有测试对象对该练习强度均产生较大的生理反应,血乳酸和心率在第2组练习后出现快速上升,蹲起速度则均表现出不同程度的下降趋势。不同专项运动员对等负荷多组力量耐力训练具有不同的反应,田径跳跃运动员对测试的强度表现出高的生理反应,心率和乳酸水平均达到或接近最大负荷极限,赛艇运动员介于中长跑和跳跃运动员之间,中长跑运动员的反应较低,心率一直保持在140次/min以下,血乳酸值在7mmol/L以下,并显示出典型的血乳酸“平衡状态”。  相似文献   

4.
目的:找到有效的陆地恢复性有氧训练手段,促进速滑运动员体能恢复.方法:运用实验法先后将12名优秀速度滑冰运动员分为对照组、亚乳酸阈、130~140次/min、110~120次/min匀速有氧跑组、个体乳酸阈心率-(30~35)次/min和110~120次/min自行车组,在2010年全国速滑联赛哈尔滨站赛后测试不同时间点血乳酸、肌酸激酶、肾上腺素等生化指标,分析对比不同恢复训练对血液生化指标的影响.结果:速滑运动员赛后血乳酸峰值出现在5~10 min,且随运动距离不同而存在差异;亚乳酸阈强度匀速有氧跑能有效促进乳酸消除,运动安排适宜时间为20~25员min,也有助于运动后血清肾上腺素恢复;个体乳酸阈心率-(30~35)次/min自行车恢复训练乳酸清除速率及肾上腺素恢复较110~120次/min快,25~30 min乳酸基本恢复,但肾上腺素恢复较亚乳酸阈强度匀速有氧跑差;不同恢复组赛后血清CK差异不大.结论:个体乳酸阈心率-(30~35)次/min自行车恢复训练是上述恢复手段中效果最佳的陆地恢复方式,能有效促进速度滑冰运动员疲劳的消除;亚乳酸阈强度匀速有氧跑可促进植物神经系统恢复.  相似文献   

5.
目的:通过两种测试方法的比较,建立优秀竞走运动员专项有氧能力的场地评价方法。研究对象为国家竞走队运动员8人;方法:采用实验室递增负荷测试和conconi场地测试。结果:实验室递增负荷测试,优秀竞走运动员的最大血乳酸值为11.50±1.51mmol/L,10min乳酸清除率为0.37±0.15,乳酸阈走速为12.44±0.59km/h,心率阈走速为13.30±0.91km/h。通过conconi测试获得的优秀竞走运动员的心率阈值为168.8±3.2次/min,个体无氧阈走速为13.40±0.27km/h;两种测试方法比较,心率阈值不存在显著性差异,个体无氧阈走速也不存在显著性的差异,两组值存在高度正相关。结论:从获取竞走运动员心率阈和个体无氧阈走速方面看,场地conconi测试可以取代实验室递增负荷测试,且更接近运动实际。  相似文献   

6.
通过对青年女子柔道运动员赛前不同训练手段血乳酸及心率的测试,评价不同训练手段的运动强度,为教练员科学安排训练提供依据.以广州队青年女子柔道运动员为研究对象,测试教学比赛课运动员每轮比赛后的血乳酸和心率、测试实战训练课和专项力量训练课的心率,并与其它学者的有关测试结果进行比较分析.研究结果显示:(1)青年女子柔道运动员教学比赛后的血乳酸为(8.01±2.11)mmol/L;(2)教学比赛准备活动与第一轮教学比赛的平均心率和最高心率分别是(121±11)次/min、(146±13)次/min和(160±7)次/min、(183±10):次/min.实战的准备活动和实战第一轮的平均心率和最高心率分别是(146±14)次/min、(168±11)次/min和(158±9)次/min、(171±11)次/min;专项力量训练的平均心率和最高心率为(159±10)次/min、(171±10)次/min.结果说明,教学比赛时,在对手安排和比赛气氛的营造上,要使之更接近正式比赛;要适当提高准备活动的负荷强度,达到准备活动的目的;应适当安排高强度、高质量的训练课,以满足正式比赛时对大运动强度的需求;影响心率的因素较多,为对运动强度进行准确判断,最好对血乳酸和心率同时测试.  相似文献   

7.
目的:为进一步研究100m、400m和1500m三种不同全速跑后血乳酸和心率的变化,选取同一年级同一班共六名志愿者参与本实验。方法:分别记录六名受试者全速跑完100m、400m、1 500m运动前和运动后3min的血乳酸值和心率值。结果:两名受试者进行100m无氧运动后,血乳酸值和心率值均有所升高,但升高幅度较小,血乳酸值最高达7.6mmol/L,心率值最高达154b/min;四名受试者进行400m和1500m有氧运动后,血乳酸值和心率值升高幅度较大,血乳酸值最高达16.2mmol/L,心率值最高达192b/min。结论:人体内的血乳酸含量和心率大小随运动项目的负荷强度和运动持续时间的增加而增加,有氧运动前后血乳酸升高幅度明显高于无氧运动,而无氧运动前后心率升高幅度明显高于有氧运动。因此,可根据血乳酸值和心率值来评定人体运动的负荷强度。  相似文献   

8.
目的:通过对羽毛球比赛全程录像拍摄分析,以及比赛中运动员生理生化指标的测试,分析羽毛球比赛的项目特点。方法:研究对象为浙江省羽毛球女一队的6名平均年龄21.9岁的女子羽毛球运动员。检测并记录该6位女运动员在2008年~2009年参与的6次教学比赛的相关指标,包括赛后即刻血乳酸浓度、比赛全程心率以及比赛中运动—间歇时间结构和移动。结果:结果显示羽毛球比赛对能量需求较高。比赛时间超过28min,由6.4s的运动与12.9s的间歇两者交替完成。整场比赛需要最大心率190.5次/min,平均心率173.5次/min。结论:羽毛球运动的根本是快,对非乳酸系统的无氧供能需求高,对乳酸无氧供能需求小。  相似文献   

9.
目的:通过对湖南师范大学9名北狮运动员双侧膝关节屈伸肌群进行等速测试,为揭示该项运动膝关节肌群收缩的生物力学特性提供实验依据。方法:采用BIODEX SYSTEM 3等速测试系统对湖南师范大学北狮运动员膝关节屈伸肌群进行等速测试,测试指标为峰力矩、相对峰力矩、屈伸肌峰力矩比、平均功率及做功疲劳度。结果:1)北狮运动员双侧膝关节屈伸肌峰力矩和相对峰力矩随测试速度的增加呈递减趋势;2)狮头狮尾屈伸肌群峰力矩比值和做功疲劳度无显著性差异;3)狮头狮尾左右膝关节同一肌群峰力矩无显著性差异。结论:舞狮运动员膝关节肌群峰力矩变化随测试速度的增加而减少,平均功率呈现随运动速度的增加而增加,到达一定速度后随速度的增加而减少的特征。  相似文献   

10.
我国男子冰球运动员比赛负荷特征的研究   总被引:4,自引:4,他引:0  
麻正茂 《冰雪运动》2009,31(1):19-24,79
为了掌握我国男子冰球运动员比赛过程的负荷特征,应用心率团队训练系统、血乳酸仪、全自动生化分析仪和摄像等方法,获得运动员比赛过程中的负荷信息。结果表明:运动员在比赛过程中,每次上场运动时间72s左右,间歇时间2min左右,净运动时间约30min。运动员心率较长时间处于最大心率的高百分比区间,各局比赛后血乳酸均达到10mmol/L左右,血尿素、肌酸激酶和血睾酮比赛前后均具有极显著性差异。我国男子冰球比赛的负荷特征为:以磷酸原和糖酵解为主要供能系统,比赛过程的时间模式可概括为“72:2:30”,运动员达到个人最高心率、血乳酸最高达到17.1mmol/L、心脏负荷总量达到7000以上,比赛负荷较大。  相似文献   

11.
本文对现代五项运动员在100m、200m、300m游泳后进行血乳酸测试36人次,对乳酸阈值、乳酸阈强度、极限乳酸值和斜率4项指标作对比分析得出:乳酸阈值不随距离的变化而改变(P>0.05),乳酸阈强度、乳酸水平与距离长短成正比,阈值后曲线斜率与距离的长短成反比。  相似文献   

12.
The aims of this study were: (1) to identify the exercise intensity that corresponds to the maximal lactate steady state in adolescent endurance-trained runners; (2) to identify any differences between the sexes; and (3) to compare the maximal lactate steady state with commonly cited fixed blood lactate reference parameters. Sixteen boys and nine girls volunteered to participate in the study. They were first tested using a stepwise incremental treadmill protocol to establish the blood lactate profile and peak oxygen uptake (VO2). Running speeds corresponding to fixed whole blood lactate concentrations of 2.0, 2.5 and 4.0 mmol x l(-1) were calculated using linear interpolation. The maximal lactate steady state was determined from four separate 20-min constant-speed treadmill runs. The maximal lactate steady state was defined as the fastest running speed, to the nearest 0.5 km x h(-1), where the change in blood lactate concentration between 10 and 20 min was < 0.5 mmol x l(-1). Although the boys had to run faster than the girls to elicit the maximal lactate steady state (15.7 vs 14.3 km x h(-1), P < 0.01), once the data were expressed relative to percent peak VO2 (85 and 85%, respectively) and percent peak heart rate (92 and 94%, respectively), there were no differences between the sexes (P > 0.05). The running speed and percent peak VO2 at the maximal lactate steady state were not different to those corresponding to the fixed blood lactate concentrations of 2.0 and 2.5 mmol x l(-1) (P > 0.05), but were both lower than those at the 4.0 mmol x l(-1) concentration (P < 0.05). In conclusion, the maximal lactate steady state corresponded to a similar relative exercise intensity as that reported in adult athletes. The running speed, percent peak VO2 and percent peak heart rate at the maximal lactate steady state are approximated by the fixed blood lactate concentration of 2.5 mmol x l(-1) measured during an incremental treadmill test in boys and girls.  相似文献   

13.
The purpose of this study was (a) to assess lactate accumulation during isometric exercise, and to quantify the shifts in accumulation following isometric training; and (b) to relate any training-induced changes in lactate accumulation to reductions in resting blood pressure. Eleven male participants undertook isometric training for a 4-week period using bilateral-leg exercise. Training caused reductions in systolic, diastolic, and mean arterial resting blood pressure (of -4.9 ± 6.3 mmHg, P = 0.01; -2.6 ± 3.0 mmHg, P = 0.01; and -2.6 ± 2.3 mmHg, P = 0.001 respectively; mean ± s). These were accompanied by changes in muscle activity, taken as electromyographic activity to reach a given lactate concentration (from 114 ± 22 to 131 ± 27 mV and from 136 ± 25 to 155 ± 34 mV for 3 and 4 mmol · L(-1) respectively. Training intensity expressed relative to peak lactate was correlated with reduced resting systolic and mean arterial blood pressure. Training caused significant shifts in lactate accumulation, and reductions in resting blood pressure are strongly related to training intensity, when expressed relative to pre-training peak lactate. This suggests that higher levels of local muscle anaerobiosis may promote the training-induced reductions in resting blood pressure.  相似文献   

14.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1 +/- 6.7 years, VO 2max 52.0 +/- 7.9 ml kg -1 min -1 ) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a ‘U-shaped’ blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0 +/- 1.4 km h -1 ) was significantly slower than running speed at the lactate threshold (12.4 +/- 1.7 km h -1 ) (P < 0.05), but there were no significant differences in VO 2 , heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-topyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

15.
定量运动后恢复期血乳酸(Bla)水平分析已成为监控和调整训练的一种普遍手段。对取样操作中的取样部位、测定时间、血液的处理和保存、样品的分析和标定、分析方法及测定的结果分析等一些实际应用问题进行综述,以期更好地为运动训练服务。  相似文献   

16.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1+/-6.7 years, VO2max 52.0+/-7.9 ml x kg(-1) x min(-1)) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a 'U-shaped' blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0+/-1.4 km x h(-1)) was significantly slower than running speed at the lactate threshold (12.4+/-1.7 km x h(-1)) (P < 0.05), but there were no significant differences in VO2, heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-to-pyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

17.
Reduced hepatic lactate elimination initiates blood lactate accumulation during incremental exercise. In this study, we wished to determine whether renal lactate elimination contributes to the initiation of blood lactate accumulation. The renal arterial-to-venous (a-v) lactate difference was determined in nine men during sodium lactate infusion to enhance the evaluation (0.5 mol x L(-1) at 16 ± 1 mL x min(-1); mean ± s) both at rest and during cycling exercise (heart rate 139 ± 5 beats x min(-1)). The renal release of erythropoietin was used to detect kidney tissue ischaemia. At rest, the a-v O(2) (CaO(2)-CvO(2)) and lactate concentration differences were 0.8 ± 0.2 and 0.02 ± 0.02 mmol x L(-1), respectively. During exercise, arterial lactate and CaO(2)-CvO(2) increased to 7.1 ± 1.1 and 2.6 ± 0.8 mmol x L(-1), respectively (P < 0.05), indicating a -70% reduction of renal blood flow with no significant change in the renal venous erythropoietin concentration (0.8 ± 1.4 U x L(-1)). The a-v lactate concentration difference increased to 0.5 ± 0.8 mmol x L(-1), indicating similar lactate elimination as at rest. In conclusion, a -70% reduction in renal blood flow does not provoke critical renal ischaemia, and renal lactate elimination is maintained. Thus, kidney lactate elimination is unlikely to contribute to the initial blood lactate accumulation during progressive exercise.  相似文献   

18.
肌乳酸跨膜运输   总被引:1,自引:0,他引:1  
乳酸生成后的代谢去向主要是氧化清除.乳酸可以生成部位通过组织间隙和血液穿梭到邻近的高氧化能力部位.乳酸跨膜运输是在一元羧化乳酸运输蛋白(MCT)协助下沿浓度梯度和PH进行的.通过训练,骨胳肌和心肌细胞的MCT1含量会增加,结果摄取乳酸增加,乳酸生成后从骨胳肌外流增加.更重要的是,线粒体膜也含有MCT,这有助于乳酸在此进行氧化.  相似文献   

19.
李靖 《湖北体育科技》2010,29(6):681-682,708
选择广东省游泳队游泳运动员为研究对象,对不同距离自由泳赛后血乳酸水平作了比较,研究了赛后血乳酸与成绩的关系以及纵向观察伴随成绩提高血乳酸水平的变化。结果表明:自由泳中,100m和200m赛后血乳酸最高,血乳酸水平与成绩不存在显著相关。纵向观测随运动成绩的提高,乳酸水平显著提高。  相似文献   

20.
男子400m分段时间对运动成绩的影响及血乳酸值的变化   总被引:5,自引:1,他引:4  
通过对不同训练水平400m运动员两次比赛实际分段时间、运动成绩、血乳酸值等进行测试和评定发现:前0~100m分段时间相对过快,必然引起后300~400m分段时间相对过慢,造成运动成绩差,血乳酸值相对高。分析:0~100m分段时间相对过快,缩短了作加速运动的距离,促使肌肉和血液中的乳酸积累速率成非线性加大,造成在离终点还有一定距离时,运动速度相对迅速减慢,此时运动对能源物质的消耗所产生乳酸引起血乳酸。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号