首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
通过比较不同强度模拟HiLo与常氧训练对白细胞及其分类指标的影响,研究不同强度模拟高住低练对机体免疫功能的影响。将SD大鼠随机分成6大组(16小组):常氧安静组(8CC)、常氧高强度组(TCH)、常氧低强度组(TEL)、模拟HiLo安静组(CGD)、模拟HiLo高强度组(TGDH)和模拟HiLo低强度组(TGDL)。5周低强度训练6周高强度训练结束后分别取样,测得白细胞及其分类指标进行比较分析。结果表明:间歇性低氧暴露与急性运动的双重刺激比单纯的急性运动更加影响机体的免疫功能;长期的有氧耐力训练、无氧耐力训练后即刻免疫机能显著下降,休息后可恢复;此外,模拟高住低练可以提高机体对极限负荷适应能力,从而改善机体的免疫能力,这将为运动员模拟高住低练时机体监控和评定提供依据。  相似文献   

2.
目的:研究不同强度低氧训练后大鼠脾NK细胞活性的变化,探讨不同强度、不同低氧训练方式对机体免疫功能的影响。方法:120只大鼠按照氧环境(常氧、高住低练、低氧)和训练强度(无、中和高强度)随机形成9种组合,中等强度训练5周,高强度训练6周,乳酸脱氢酶释放法测定NK活性。结果:训练强度、氧环境与训练强度的交互作用对NK细胞活性具有显著影响;常氧高强度训练能显著提高NK细胞活性,低氧和高住低练高强度训练对NK活性无促进作用;常氧、低氧环境下中等强度训练对NK活性无显著影响,但高住低练环境下中等强度训练会严重损害NK细胞功能。结论:低氧和高住低练环境下高强度训练不利于NK活性的提高;高住低练环境下长期中等强度训练会严重降低NK细胞功能。  相似文献   

3.
目的:研究不同模式低氧训练后大鼠脾淋巴细胞功能的变化,探讨机体免疫功能的变化规律。方法:120只大鼠按照氧环境(常氧、高住低练、低氧)和训练强度(无、中和高强度)随机形成9种组合,中等强度训练5周,高强度训练6周,测定淋巴细胞转化功能。结果:单纯的低氧环境和高强度训练均能显著上调B细胞分化功能,低氧高强度训练后B细胞分化功能进一步显著增强,HiLo环境则对T细胞功能具有显著抑制作用,但HiLo训练能减轻环境对T细胞的抑制;常氧下长期中、高强度训练后脾T细胞功能受抑,但低氧和HiLo训练后未见相同结果。  相似文献   

4.
为探讨不同强度低氧训练对大鼠体重摄食量的影响,将152只健康雄性大鼠随机分为常氧组和低氧组,各组别又分为无训练组、中强度训练组和高强度训练组分别对其进行研究.结果发现:体重的变化伴随着摄食量的变化,但没有表现出同步性.在低氧环境下训练后,中、高强度组大鼠比较,体重没有显著性差异;而常氧环境下高强度组大鼠体重始终明显高于中强度组大鼠体重.仅接受低氧刺激的大鼠体重显著降低,再加上训练双重负荷影响,大鼠体重下降更为显著,且随着训练时间的延长,低氧中大鼠体重增加幅度更小.  相似文献   

5.
目的:研究不同强度模拟低氧训练后大鼠红细胞及其参数的变化,探讨不同强度模拟低氧训练对骨髓造血功能的影响。方法:将SD大鼠随机分为16小组,其中常氧跟低氧各8组且一一对应。5周中强度训练、6周高强度训练后,检测大鼠网织红细胞及其参数的变化情况。结果显示:仅接收低氧刺激,不会使骨髓造血状况有显著改变;但进行高强度训练会使幼稚网红含量明显增多,骨髓红细胞比较活跃;两种氧环境中训组和高训组运动后基础状态下,网红含量都没有发生明显改变,高训组在运动后即刻骨髓造血功能是受到抑制的;低氧环境下,一次高强度运动后骨髓造血功能受到抑制,进行中强度训练会显著提高骨髓造血状况,进行极限强度运动后,网红活跃度明显降低。  相似文献   

6.
以雄性SD大鼠为研究对象,对常氧和低氧两种氧环境下不同运动强度对红系细胞的影响分别进行研究,结果表明:单纯的低氧刺激可以提高红系细胞氧运输能力;低氧环境进行中、高强度训练对增强血液运输氧气能力的效果明显优于常氧环境训练;低氧环境无训练组进行一次中、高强度运动和高训组进行一次极限强度运动提高血液运输氧气能力显著好于常氧环境相应组别.  相似文献   

7.
低氧训练过程中大鼠体重及能量代谢的变化   总被引:1,自引:0,他引:1  
目的:研究低氧训练过程中大鼠体重、体成分、能量摄入及静息代谢率的变化,初步探讨低氧训练过程中大鼠体重变化与能量代谢变化间关系。方法:经过适应性训练筛选出的50只SD大鼠平均分为5组,保证每组大鼠体重基本一致,随机分为常氧安静组、常氧限食组、常氧训练组、低氧安静组、低氧训练组。训练组大鼠采用水平动物跑台进行耐力训练6周。试验期间每周称量大鼠体重,每3天称量一次大鼠食物摄入量。试验前、试验1周、3周、5周末测定大鼠静息代谢率,试验后处死大鼠并剥离其肾周、腹股沟脂肪及腓肠肌,称量其重量。结果:低氧训练组大鼠体重增幅除在第6周末与常氧训练组无显著性差异外,均显著性低于其他试验组,试验前3周其体重出现负增长。试验后低氧训练组大鼠肾周及腹股沟脂肪总含量显著低于其他试验组,而腓肠肌重量与其他组无显著性差异。低氧训练组大鼠试验期间总食物摄入量较其他各组大鼠低,尤其在前3周。低氧训练组大鼠静息代谢率先上升而后逐渐下降,至试验3周末时仍高于试验前值,试验5周末时降至低于试验前值(差异不显著),而除低氧安静组外的其他组大鼠静息代谢率则持续下降,至试验5周末时均显著性低于试验前水平。结论:从减缓体重增加幅度及对体成分的影响角度看,低氧训练减体重的效果优于限制饮食、耐力训练及低氧暴露。低氧训练过程中食物摄入量减少及静息代谢率增加可能是大鼠体重增长减缓的原因。  相似文献   

8.
目的通过比较模拟HiLo与常氧训练对照组的网织红细胞及其参数指标,探讨不同强度模拟HiLo对骨髓造血功能的影响。方法将SD大鼠随机分成16小组,模拟高住低练组与常氧组各8组且一一对应。5周低强度训练、6周高强度训练结束后,检测大鼠的网织红细胞及其分类指标,并对数据进行统计学处理。结果模拟HiLo的高强度定量负荷组与极限负荷组的Retic%显著低于常氧组(P<0.01)。两氧环境中,高强度定量负荷组Retic%显著低于运动后40h安静组,极限负荷组较高强度定量负荷组有所升高,但无显著性差异。结论高、低强度的模拟HiLo对骨髓造血功能产生不同程度的影响,高强度、极限强度训练骨髓造血功能相对常氧受到显著抑制;在两氧环境下,高强度运动后即刻骨髓增殖活性受抑,而极限强度运动可在一定程度上刺激骨髓造血,休息40h后,模拟HiLo出现代偿性恢复。  相似文献   

9.
目的:通过建立肥胖大鼠低氧训练模型,观察比目鱼肌糖有氧代谢关键酶的基因表达水平,探讨低氧训练对肥胖大鼠有氧代谢能力的影响。方法:出生21天的离乳雄性SD大鼠,经高脂饲料喂养10周、肥胖模型验证成功后,继续高脂饲料喂养2周,筛选130只随机分为13组:对照0周组,低氧安静1、2、3、4周组,常氧训练1、2、3、4周组,低氧训练1、2、3、4周组。低氧环境模拟海拔3 500m(氧浓度13.6%);常氧和低氧训练组分别以25m/min、20m/min进行跑台训练,各训练组持续运动1h/d、6d/w、1~4w。采用荧光定量PCR法测试比目鱼肌组织CS-2、NAD+-IDH3α、DLST-2mRNA表达水平。结果:1)常氧训练组第1、3周CS-2mRNA相对表达量较第2周显著升高(P<0.05),低氧安静组第3周较第1周显著降低(P<0.05)。第3周时低氧安静组、低氧训练组较常氧训练组显著降低(P<0.01或P<0.05)。2)常氧训练组、低氧安静组第2、3、4周NAD+-IDH3αmRNA相对表达量较0周显著升高(P<0.01或P<0.05),低氧训练组第1、2、4周较0周显著升高(P<0.05或P<0.01)。第1周时低氧安静组、低氧训练组较常氧训练组显著升高(P<0.01);第4周时低氧训练组较常氧训练组、低氧安静组显著升高(P<0.05或P<0.01)。3)常氧训练组第2、3、4周DLST-2mRNA相对表达量较0、1周显著降低(P<0.05或P<0.01),低氧安静组、低氧训练组第1、2、3、4周较0周显著降低(P<0.01);第1、3周时低氧安静组、低氧训练组较常氧训练组显著下降(P<0.05或P<0.01);第2周时低氧训练组较常氧训练组显著升高(P<0.05)。结论:1)4周低氧训练可逆转肥胖大鼠比目鱼肌由于低氧导致的CS-2mRNA表达的下降,以提高机体的有氧代谢能力。2)4周低氧训练上调肥胖大鼠比目鱼肌NAD+-IDH3αmRNA表达的作用强于常氧训练和低氧安静,可在一定程度上提高机体的有氧代谢能力。3)4周低氧训练、常氧训练和低氧安静均下调肥胖大鼠比目鱼肌DLST-2mRNA表达,可能在一定程度上影响机体的有氧代谢能力。  相似文献   

10.
目的:探讨低氧环境和训练强度对免疫系统Th1/Th2平衡的影响.方法:200只大鼠按照氧环境(常氧、高住低练、高住高练)和训练强度(无、中和高)随机形成9种组合,中强度训练5周,高强度训练6周,取样前再分为安静组和定量运动组,共21组,放射免疫方法测定IL-2、IL-4.结果:中强度高住低练和高住高练后安静状态下IL-4较常氧中训组显著上调;高住高练和高住低练中训组一次中强度定量运动以及高住无训练组一次高强度定量运动后,IL-2/IL-4均较常氧相应组显著降低.提示中强度高住高练和高住低练、一次中强度高住高练课或一次不适应的低氧高强度运动,均可能扰乱机体Th1/Th2平衡.结论:5周中强度高住高练和高住低练后基础状态下、高住高练和高住低练中训组一次中强度运动后即刻以及高住无训练组一次不适应的高强度运动后即刻,细胞免疫功能受损,应给予关注;中强度高住高练和高住低练对IL的不利影响大于高强度训练.  相似文献   

11.
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (<2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is >12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   

12.
Altitude and endurance training   总被引:4,自引:0,他引:4  
Rusko HK  Tikkanen HO  Peltonen JE 《Journal of sports sciences》2004,22(10):928-44; discussion 945
The benefits of living and training at altitude (HiHi) for an improved altitude performance of athletes are clear, but controlled studies for an improved sea-level performance are controversial. The reasons for not having a positive effect of HiHi include: (1) the acclimatization effect may have been insufficient for elite athletes to stimulate an increase in red cell mass/haemoglobin mass because of too low an altitude (< 2000-2200 m) and/or too short an altitude training period (<3-4 weeks); (2) the training effect at altitude may have been compromised due to insufficient training stimuli for enhancing the function of the neuromuscular and cardiovascular systems; and (3) enhanced stress with possible overtraining symptoms and an increased frequency of infections. Moreover, the effects of hypoxia in the brain may influence both training intensity and physiological responses during training at altitude. Thus, interrupting hypoxic exposure by training in normoxia may be a key factor in avoiding or minimizing the noxious effects that are known to occur in chronic hypoxia. When comparing HiHi and HiLo (living high and training low), it is obvious that both can induce a positive acclimatization effect and increase the oxygen transport capacity of blood, at least in 'responders', if certain prerequisites are met. The minimum dose to attain a haematological acclimatization effect is > 12 h a day for at least 3 weeks at an altitude or simulated altitude of 2100-2500 m. Exposure to hypoxia appears to have some positive transfer effects on subsequent training in normoxia during and after HiLo. The increased oxygen transport capacity of blood allows training at higher intensity during and after HiLo in subsequent normoxia, thereby increasing the potential to improve some neuromuscular and cardiovascular determinants of endurance performance. The effects of hypoxic training and intermittent short-term severe hypoxia at rest are not yet clear and they require further study.  相似文献   

13.
采用实验法,将24名优秀女子赛艇运动员分为4组(每组6人),分别进行4周低住低练(LoLo)、高住低练(HiLo)、低住高练(LoHi)和高住高练低练(HiHiLo),旨在探讨不同模式低氧训练过程中运动员血象指标RBC、Hb、Hct和WBC动态变化的规律和特点。结论认为:不同模式低氧训练中RBC、Hb和Hct的变化幅度、特点与规律存在一定差异,与高原训练比较也有所不同;HiLo、LoHi和HiHiLo3种低氧训练模式均能明显提高运动员的RBC、Hb和Hct,但不同模式提高程度不同,RBC表现为HiLo〉HiHiLo〉LoHi〉LoLo,HB和Hct表现为HiHiLo〉HiLo〉LoHi〉LoLo,RBC与Hb和Hct的增加不完全同步;4周3种模式低氧训练效果至少可以保持2周,而HiHiLo组训练后保持Hb的能力要优于HiLo和LoHi组;不同低氧训练模式虽对WBC造成一定规律性的改变,但各组间无明显差异的结果表明,不同低氧训练模式对机体免疫机能虽有影响,但不明显。  相似文献   

14.
目的:通过高原低氧大强度训练与增压辅助方法相结合建立动物模型,探讨高原低氧大强度训练后施加增压辅助方法对大鼠骨骼肌组织HIF-1α表达的影响。方法:wistar大鼠32只随机分为4组:其中A组为自然环境下恢复,B组0.2MPa增压1h恢复,C组0.2MPa增压2h恢复,D组0.3MPa增压2h恢复。4组大鼠在西宁(2260m)经过3天适应性训练和6天正式训练。在最后一次训练结束后24h所有大鼠实施腹腔麻醉取大鼠一侧腓肠肌,运用蛋白质免疫印迹法检测各组HIF-1α蛋白表达量。结果:施加增压辅助方法干预后各恢复组大鼠骨骼肌HIF-1α蛋白表达较自然恢复组呈上升趋势,其中B组增幅较大。结论:通过1周低氧大强度训练后,施加增压辅助方法的实验发现,各增压恢复组大鼠骨骼肌HIF-1α蛋白表达上调,表明高原训练后施加增压辅助方法可能对增强机体低氧耐受能力产生影响,有利于机体运动疲劳的快速恢复以及有效发挥高原训练的优势。  相似文献   

15.
不同训练强度对间歇性缺氧大鼠骨骼肌NO和NOS的影响   总被引:6,自引:0,他引:6  
利用低氧舱技术模拟“高住低练”环境,观察间歇性缺氧条件和两种不同运动训练强度对骨骼肌NO和NOS的共同作用效应。SD雄性大鼠50只,随机分为6组:(1)常氧对照组(NC),(2)常氧低强度运动组(NEL),(3)常氧高强度运动组(NEH),(4)低氧对照组(HC),(5)低氧低强度运动组(HEL),(6)低氧高强度运动组(HEH)。低氧组每日20时至次日8时置于低氧舱中,其余时间置于常氧环境下。低氧舱氧浓度控制在14.7%,相当于海拔高度大约2800米。运动组每天在常氧环境中进行30分钟跑台训练,速度定为26.8米/分钟,低强度运动组坡度0度,高强度运动组坡度15度。9周后各组大鼠于安静状态进行宰杀,取股四头肌,匀浆进行NO含量和NOS活性检测。结果显示:常氧高强度运动组股四头肌NO水平与常氧对照组相比呈升高趋势并接近显著性水平(p=0.052)。低氧低运动强度组NO显著高于其他组,NOS变化组间比较均未达显著性水平。说明常氧条件下,高强度运动强度才能使NO释放增加。而在间歇性缺氧条件下,较低强度运动即可使NO释放明显增加。提示间歇性缺氧条件可使引起NO释放的运动强度阈值下降。  相似文献   

16.
朱荣  张缨  王芳 《体育科学》2007,27(3):68-71
观察不同低氧训练方式对红细胞调控T淋巴细胞免疫及亚群的影响。用低氧舱模拟4000m高原低氧环境(12.6%氧浓度),将50只SD雄性大鼠随机平分为5组:高住高训组(HiHi)、高住低训组(HiLo)、高住对照组(HiCo)、低住低训组(LoLo)和低住对照组(LoCo)。实验4周,每周6天游泳,1天休息,每天训练1.5h。实验结束后,同时取腹主动脉血,用流式细胞仪检测红细胞CD48、CD59荧光强度和T淋巴细胞CD2^+%、CD3^+%、CD4^+%、CD8^+%。结果发现,红细胞CD48、CD59表达和T淋巴细胞CD2^+%、CD3^+%、CD4^+%、CD8^+%大致趋势是HiHi组〈HiCo组〈HiLo组〈LoCo组〈LoLo组,各组间CD4^+/CD8^+比值无显著性差异(P〉0.05)。提示:1)低氧暴露可能会降低红细胞调控T淋巴细胞免疫能力;常氧环境中运动有可能促进红细胞调节T淋巴细胞免疫;2)低氧暴露和常氧环境中训练都有可能影响T淋巴细胞总数;3)不同低氧训练方式中CD4^+/CD8^+比值没有显著性差异。  相似文献   

17.
杨明祥 《体育科研》2012,33(6):80-83-92
摘要:目的:旨在观察不同训练目的的4周高原训练对不同水平优秀自行车运动员身体机能的影响。方法:对8名优秀男子中长距离自行车运动员进行4周高原训练,内容包括公路专项力量、速度和公路有氧耐力,健将级组(c1)组以专项训练为主,一级组(C2)组以有氧耐力训练为主。每天监测晨脉;分别在高原训练2、3、4周和下高原1周后测试血常规;分别在大负荷训练后、休息后和下高原后2周测试血尿素(BU)、肌酸激酶(CK);分别在高原训练前后测试身体成分。结果:两组晨脉均随运动负荷的变化而变化,并表现出高原训练早期升高后期下降的变化趋势;两组白细胞(WBC)和淋巴细胞(LY)均在高原训练期间有所降低,结束1周后回升,C1组变化幅度更大;两组血红蛋白(Hb)和红细胞压积(Hct)均在4周高原训练期间持续升高,并维持到结束后1周;C1组BU和CK变化与训练负荷相一致;高原训练后,C1组脂肪和C2组骨骼肌质量分别降低4.5%和3.9%.结论:自行车运动员身体机能对高原训练的适应性变化会受到高原训练经历和运动训练水平的影响。  相似文献   

18.
Abstract

Hypoxic training methods are increasingly being used by researchers in an attempt to improve performance in normoxic ambients. Moreover, previous research suggests that resistance training in hypoxia can cause physiological and muscle adaptations. The primary aim of this study was to compare the effects of 8 weeks of high-intensity resistance circuit-based (HRC) training in hypoxia on body composition and strength performance. The secondary aim was to examine the effects of HRC on metabolic parameters. Twenty-eight male participants were randomly assigned to either hypoxia (Fraction of inspired oxygen [FIO2]?=?15%; HRChyp: n?=?15; age: 24.6?±?6.8 years; height: 177.4?±?5.9?cm; weight: 74.9?±?11.5?kg) or normoxia [FIO2]?=?20.9%; HRCnorm: n?=?13; age: 23.2?±?5.2 years; height: 173.4?±?6.2?cm; weight: 69.4?±?7.4?kg) groups. Training sessions consisted of two blocks of three exercises (Block 1: bench press, leg extension and front pull down; Block 2: deadlift, elbow flexion and ankle extension). Each exercise was performed at six repetition maximum. Rest periods lasted for 35-s between exercises, 3-min between sets and 5-min between blocks. Participants exercised twice weekly for 8 weeks, and body composition, strength and blood tests were performed before and after the training program. Lean body mass and bone mineral density significantly increased over time in the HRChyp (p?<?.005; ES?=?0.14 and p?<?.014; ES?=?0.19, respectively) but not in the HRCnorm after training. Both groups improved their strength performance over time (p?<?.001), but without group effect differences. These results indicate that simulated hypoxia during HRC exercise produced trivial effects on lean body mass and bone mineral density compared to normoxia.  相似文献   

19.
为探讨模拟低氧训练对运动员免疫机能变化的影响,对12名女子赛艇运动员高住高练低训(HiHiLo)和低住高练训练(LoHi)过程中CD3^+、CD4^+、CD8^+、NK细胞及NKT细胞的变化进行观察。结果表明:模拟低氧训练过程中,CD4^+/CD8^+比值、NK细胞的变化不产生显著性差异。训练至第4、5周,NKT细胞与训练前比较明显下降,且HiHiLo组比LoHi组变化更为显著。提示模拟低氧训练过程中不同训练时期对免疫指标产生的影响不同,主要表现为低氧训练后期部分免疫指标出现显著性差异。同时,不同的模拟低氧训练方式对人体免疫功能产生的影响也有差异,HiHiLo组比LoHi组免疫抑制现象更为明显。NKT细胞对低氧训练表现出较为明显的反应,可考虑作为首选指标监测机体的免疫状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号