首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用0.35μm CMOS工艺设计2.5 Gbit/s速率光纤通信用收发全集成电路.发射部分包括复接和激光驱动电路, 完成4路622 Mbit/s随机信号输入、1路2.5 Gbit/s驱动信号输出的功能; 接收部分完成1路2.5 Gbit/s微弱随机信号输入、 4路622 Mbit/s分接输出功能.主要电路包括前置放大、限幅放大、时钟恢复、数据判决和1: 4分接. 测试结果显示, 2.5 Gbit/s光纤通信用发射芯片逻辑功能正确, 激光驱动器输出数据眼图10%~90%上升、下降沿时间分别为211.1 ps和200 ps; 2.5 Gbit/s光纤通信用接收芯片接收灵敏度优于20 mV, 恢复出的数据和时钟分别经过1: 4数据分接和1: 4时钟分频后, 相位抖动的均方根值分别为15.6 ps和1.9 ps. 两芯片均适用于2.5 Gbit/s速率光纤通信系统.  相似文献   

2.
提出了用于SOH系统SIM-4速率级光接收机中主放大器的CMOS限幅放大器的设计方法。此限幅放大器由输入缓冲、主放大单元、输出缓冲、偏置补偿电路四部分组成。当限幅放大器工作在622Mb/s,输入动态范围为47dB,50Ω负载上的输出限幅在900mVpp刑用5V电源供电,功耗约为70mW。  相似文献   

3.
描述了一种基于TSMC0 25μmCMOS工艺设计的10Gbit/s(STM 64,OC 192)四相位时钟1∶4分接器.为了实现最高的工作频率和抑制共模噪声,所有的电路都采用了源极耦合逻辑(SCFL)结构.本分接器的特点是通过采用固定延时缓冲来实现四相位时钟和输出边沿的对准.通过在晶圆测试,该芯片在输入10Gbit/s长度为231 -1伪随机码流时,分接功能正确.此时所测得的眼图的均方根抖动、上升沿和下降沿分别为11, 123和137ps.芯片面积为0 9mm×1 2mm,在3 3V单电源供电的情况下的典型功耗为550mW.  相似文献   

4.
讨论一款基于SiGe BiCMOS工艺工作速率为10 Gb/s激光驱动芯片的设计.该激光驱动芯片包括输入缓冲、驱动放大电路和输出级电路3个部分.输入缓冲、驱动放大电路采用电流模电路,满足高速数据传输和放大的能力.输出级电路结构采用新型的MOS-HBT共源共栅结构可以降低米勒效应减小输入电容,从而使激光驱动芯片工作在10 Gb/s时也能达到良好的性能.主电路电源电压为3.3 V,输出级电路供电电压为5.5 V,确保激光器有足够的电压摆幅.芯片总面积(包括焊盘)为600μm×800μm,,测试表明当输入10 Gb/s的非归零随机码,输出级电源电压为5.5 V时,电路总功耗为660 mw,在50 Ω负载上可以提供3 V的驱动电压(相应的驱动电流为60mA).测试眼图清晰,可以很好地满足SDH STM64/SONNET OC192和10 Gb/s以太网的模板要求.  相似文献   

5.
用于神经信号再生的神经功能电压驱动电路   总被引:1,自引:0,他引:1  
采用华润上华0.6μm CMOS工艺,设计实现了一种用于神经信号再生微电子系统的低功耗、高增益功能电激励电压驱动电路.它可以用于驱动激励电极和与之相连的神经来再生神经信号.电路由2部分组成:全差分折叠式共源共栅放大器及带过载保护的互补型甲乙类输出级.电路采用了满摆幅的输入输出结构,保证了大输入电压范围和大输出电压范围.仿真结果表明,电路增益可以达到81dB,具有295kHz的3dB带宽.芯片面积为1.06mm×0.52mm.经流片实现后在片测试,在单电源 5V下工作,直流功耗约为7.5mW,输出电压幅度达到4.8V;同时在单电源 3.3V下也可正常工作.  相似文献   

6.
采用TSMC0·18μm CMOS工艺实现了一种应用于光纤通信系统SDH STM-64的10Gbit/s1∶4分接器,整个系统采用树型结构,由1个高速1∶2分接器、2个低速1∶2分接器、分频器以及数据和时钟输入输出缓冲组成.为达到优化性能、降低功耗的目标,其中高速分接部分和5GHz1∶2分频器都采用共栅结构、单时钟输入的锁存器;而低速分接部分则由动态CMOS逻辑实现.通过在片晶圆测试,该芯片在输入10Gbit/s、长度为231-1的伪随机码流时工作性能良好,电源电压1·8V,功耗仅为100mW.芯片面积为0·65mm×0·75mm.  相似文献   

7.
采用TSMC 0.18μmCMOS工艺实现了一种应用于光纤通信系统SDH STM-64的10 Gbit/s1:4分接器,整个系统采用树型结构,由1个高速1:2分接器、2个低速1:2分接器、分频器以及数据和时钟输入输出缓冲组成.为达到优化性能、降低功耗的目标,其中高速分接部分和5 GHz 1:2分频器都采用共栅结构、单时钟输入的锁存器;而低速分接部分则由动态CMOS逻辑实现.通过在片晶圆测试,该芯片在输入10 Gbit/s、长度为231-1的伪随机码流时工作性能良好,电源电压1.8 V,功耗仅为100mW.芯片面积为0.65 mm×0.75 mm.  相似文献   

8.
描述了一种基于TSMC 0.25 μm CMOS工艺设计的10 Gbit/s(STM-64,OC-192)四相位时钟1:4分接器.为了实现最高的工作频率和抑制共模噪声,所有的电路都采用了源极耦合逻辑(SCFL)结构.本分接器的特点是通过采用固定延时缓冲来实现四相位时钟和输出边沿的对准.通过在晶圆测试,该芯片在输入10 Gbit/s 长度为231-1伪随机码流时,分接功能正确.此时所测得的眼图的均方根抖动、上升沿和下降沿分别为11,123和137 ps.芯片面积为0.9 mm×1.2 mm,在3.3 V单电源供电的情况下的典型功耗为550 mW.  相似文献   

9.
针对无源光网络(PON)设计了10 Gbit/s的突发模式前置放大器. 为了获取大动态范围和快速响应,电路采用DC耦合结构,并设计了一种反馈型峰值检测单元以实现自动增益控制与阈值提取功能. 利用调节型共源共栅(RGC)结构的输入级单元减小了电路的输入电阻,使得包括光检测器电容在内的大寄生电容与电路的主极点相隔离,从而提高了带宽. 该前置放大器采用低成本的0.13 μm CMOS工艺实现,芯片面积为425μm×475μm,总功耗为23.4mW. 测试结果表明,电路的工作速率范围在1.25 ~10.312 5Gbit/s,可提供64.0 dBΩ的高跨阻增益与54. 6 dBΩ的低跨阻增益,输入动态范围大于22.9 dB. 等效输入噪声电流为23.4 pA/Hz1/2. 该放大器可满足10G-EPON与XG-PON的相关指标.  相似文献   

10.
采用TSMC 0.18 μm CMOS 工艺实现了一个20 Gbit/s 1∶2分接器,分接器由主从从、主从D触发器和数据输出缓冲组成.D触发器单元采用动态负载结构,其偏置晶体管采用单时钟输入的共栅结构.动态负载结构的触发器工作速度更快因为它减小了输出点的冲放电时间,而且由于工作时电流处于开关模式,其功耗更低.另外,触发器中采用交叉耦合的正反馈三极管对,加快了整个电路的速度.通过在片晶圆测试,该芯片在输入20 Gbit/s、长度为223-1的伪随机码时工作良好.功耗仅为108 mW,芯片面积为475 μm×578 μm.  相似文献   

11.
采用TSMC 0.18 μm CMOS 工艺实现了一个20 Gbit/s 1∶2分接器,分接器由主从从、主从D触发器和数据输出缓冲组成.D触发器单元采用动态负载结构,其偏置晶体管采用单时钟输入的共栅结构.动态负载结构的触发器工作速度更快因为它减小了输出点的冲放电时间,而且由于工作时电流处于开关模式,其功耗更低.另外,触发器中采用交叉耦合的正反馈三极管对,加快了整个电路的速度.通过在片晶圆测试,该芯片在输入20 Gbit/s、长度为223-1的伪随机码时工作良好.功耗仅为108 mW,芯片面积为475 μm×578 μm.  相似文献   

12.
提出了一种12-Gbit/s的低功耗、宽带CMOS具有双反馈结构的前馈共栅差分跨阻放大器,用于甚短距离传输光电集成电路接收机.通过将输入节点的主极点提高到一个较高的频率,增大了放大器带宽.此外,采用2个反馈环路降低输入等效电阻,从而进一步提高了带宽.提出的跨阻放大器采用TSMC0.18μm CMOS工艺制造.整个电路具有较小的芯片面积,其核心面积仅为0.0036 mm~2.在不考虑两级差分的缓冲放大器时,其功耗为14.6 mW.测试结果表明,在1.8V的电源电压下,实现了9GHz的3dB带宽和49.2dBΩ的跨阻增益.测量的平均输入噪声电流功率谱密度为28.1 p A/Hz~(1/2).在相同的工艺条件下,与已发表的文献相比,DNFFCG差分跨组放大器具有最佳的增益带宽积.  相似文献   

13.
介绍了单片集成MEA系统和用于该系统的神经元信号探测电路和激励电路,基本单元电路是低功耗、低噪声、高增益和小版图尺寸的运算放大器.详细讨论了探测电路、激励电路和基本单元运算放大器的设计.神经元信号探测电路版图面积290 μm×400 μm,功耗2.02 mw,等效输入噪声17.72 nV/Hz,增益60.5 dB,输出电压摆幅-2.48~+2.5 V.激励电路版图面积130μm×290 μm,功耗740μW,输出电压摆幅-2.5~2.04 V.参数表明这2种电路适用于单片集成MEA系统.探测电路和单片集成MEA系统已经流片.探测电路的测试结果表明电路工作正常.  相似文献   

14.
描述了用于SDH光纤通信STM-16速率级的2.488Gbit/s时钟和数据恢复电路.该电路采用基于注入式锁相环和D触发器的电路结构,在标准的0.35μmCMOS工艺上实现流片.经过测试,当输入长度为231-1的伪随机序列,数据速率为2.488Gbit/s时,在误码率为10-12的条件下,电路的灵敏度小于20mV.恢复得到的时钟具有2.8ps的均方根相位抖动,在100kHz频偏处的相位噪声为-110dBc/Hz,并具有大于40MHz的捕获范围.5V电源供电时,电路消耗680mW功率.芯片面积为1.49mm×1mm.  相似文献   

15.
给出了一个应用于无线局域网WLAN802.11a的中低噪声、高增益的下变频器.该下变频器采用高中频的结构,输入的射频频率(RF)、本振(LO)频率和输出的中频频率(IF)分别为5.15 ~5.35,4.15 ~4.35和1GHz.为了提高混频器的线性度,电路采用了伪差分的吉尔伯特结构和源极电阻负反馈技术;为了获得低的噪声系数,混频器采用电流源注入技术和LC谐振电路作为负载.此外,采用了一种改进的源极跟随器输出缓冲电路,在不恶化其他性能的情况下混频器可以达到较高的增益.该芯片采用0.18μm RF CMOS工艺制作,包含所有焊盘在内的芯片尺寸为580μm×1 185μm.测试结果表明:在1.8V电源电压下,消耗电流为3.8mA,转换增益为10.1dB,输入1dB压缩点为-3.5dBm,输入三阶截点为5.3dBm,单边带(SSB)噪声系数(NF)为8.65dB.  相似文献   

16.
介绍了一种应用于下一代移动通信系统的高性能宽带射频收发信机的实现.本射频收发信机工作在6~6.3GHz频段,信道带宽达到100MHz,工作在时分双工模式并支持IMT-advanced系统采用的多输入多输出(MIMO)技术.为了获得最佳的性能,采用了经典的超外差结构.详细介绍了系统关键部件如低噪声放大器、功率放大器以及本地振荡器的设计问题.测试结果表明,射频收发信机的最大线性输出功率大于23dBm,低噪声放大器的增益和噪声系数分别为大约24dB和小于1dB.此外,误差矢量幅度(EVM)的测试结果表明实现的射频收发信机的性能远超过LTE-advanced系统的要求.采用最大8×8的MIMO配置,本射频收发信机在现场试验中支持超过1Gbit/s的数据传输率.  相似文献   

17.
设计了一种用于逐次逼近型ADC中的电容自校准电路.通过增加一个校准周期,该电容自校准结构即可与原电路并行工作,并可校准电路工作时产生的误差.采用该电路设计了一个用于多通道逐次逼近型结构的10bit32Msample/s模数转换器单元,该芯片在Chart0.25μm2.5V工艺上实现,总的芯片面积为1.4mm×1.3mm.在32MHz工作时,通过校准后的信噪比仿真结果为59.5861dB,无杂散动态范围为70.246dB.芯片实测,输入频率5.8MHz时,信噪失真比为44.82dB,无杂散动态范围为63.7604dB.  相似文献   

18.
为了使一个10 Gbit/s 2∶1半速率复接器电路能够在无外部提供时钟的环境中工作,需要一个5 Gbit/s时钟恢复电路从一路输入数据中提取出所需时钟.该时钟恢复电路采用3级环形压控振荡器,以克服2级振荡器存在的起振不可靠和4级振荡器振荡频率低的问题;采用鉴频鉴相器来增加牵引范围,以适应由于工艺、电压及温度偏差等原因...  相似文献   

19.
为解决小信号易受干扰、难以实现线性放大的问题,以MSP430F247单片机为控制核心,采用压控可变增益宽带放大器VCA820作为程控增益放大器,设计了一个低噪声宽直流放大器.系统能对直流到20MHz的信号,实现增益从0dB到80dB范围内以1dB为步进的程控放大,带内增益起伏小于0.5dB,50负载时输出信号峰-峰值高达30V.系统的零点漂移小,工作带宽高,驱动能力强,性能稳定,可广泛应用于传感器网络和通信设备等电路中.  相似文献   

20.
田虓 《当代电大》2001,(2):39-40
1填空题 (1)闭环控制与开环控制比较其主要优点是_。 (2)传递函数分子代数方程的根被称为_,分母代数方程的根被称为_。 (3)控制系统常常按开环传递函数中所含_个数来分类,分为“0”型、“1”型等系统。 (4)系统在不同频率的正弦信号作用下,输出稳态分量与输入信号的复数比称为_,输出信号与输入信号的幅值比称为_,输出信号与输入信号的相位差称为_。 (5)微分控制在任何情况下都不能与被控对象_。使用。 (6)在G1(s)=(T1s+1)/(T2s+1)中,若T1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号