首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
第42届IMO第2题为: 对所有正实数a,b,c,证明:a/√(a2+8bc)+b/√(b2+8ca)+c/√(c2+8ab)≥1. (1) 文[1]、[2]给出了证明及推广,并作了变式探究.笔者读后深受启发,对该问题作了进一步的探讨,本文给出-个简洁的新证明,并对结论加以推广和变式研究.  相似文献   

2.
第42届IMO第2题简证   总被引:4,自引:0,他引:4  
第 42届 IMO第 2题是 :对所有正实数 a,b,c,证明 :aa2 +8bc+bb2 +8ca+cc2 +8ab≥ 1.(1)这是一个形式优美的不等式 ,文 [1]介绍了一种基于反证法的证明 .笔者经过思考 ,给出了一种很简洁的直接证法 .证明  (a43 +b43 +c43 ) 2 - (a43 ) 2=(b43 +c43 ) (a43 +a43 +b43 +c43 )≥ 2 b23 c23 · 4a23 b13 c13=8a23 bc,∴ (a43 +b43 +c43 ) 2 ≥ (a43 ) 2 +8a23 bc=a23 (a2 +8bc) ,∴ aa2 +8bc≥ a43a43 +b43 +c43.同理可证 :bb2 +8ac≥ b43a43 +b43 +c43,cc2 +8ab≥ c43a43 +b43 +c43,以上三式相加 ,即证得 (1)式成立 .第42届IMO第2题简证@姜…  相似文献   

3.
第42届IMO第二题为: 对所有正实数a,b,c,证明a/√a2+8bc+b/√b2+8ca+c/√c2+8ab≥1.  相似文献   

4.
第42届国数学奥林匹克试题第2题是:对所有正实数a,b,c,证明(a)/(a2+8bc)+(b)/(b2+8ca)+(c)/(c2+8ab)≥1.文[1]采用文[3][4]的方法给出其推广为:若a,b,c∈R+,λ≥8,则(a)/(a2+λbc)+(b)/(b2+λca)+(c)/(c2+λab)≥(3)/(1+λ)(1).文[2]给出了(1)式的简证,本文进一步把(1)式推广为更一般的形式:  相似文献   

5.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

6.
全日制普通高级中学教科书《数学》第一册(上)第136页的第7题是:已知a2,b2,c2成等差数列(公差不为0),求证:b+1c,c+1a,a+1b也成等差数列.此题的证明并不难,我们感兴趣的是该问题的逆命题成立吗?笔者发现:命题若b+1c,c+1a,a+1b成等差数列,则a2,b2,c2也成等差数列.证明由b+1c,c+1a,a+1b成等差数列可得b+1c+a+1b=c+2a,因此(a+b)(a+c)+(b+c)(c+a)=2(b+c)(a+b),即a2+c2=2b2.所以a2,b2,c2成等差数列.于是,我们有:定理1设a,b,c∈(0,+∞),则a2,b2,c2成等差数列的充要条件是b+1c,c+1a,1a+b成等差数列.波利亚在《怎样解题》一书中这样写道:当你发现了一…  相似文献   

7.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

8.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

9.
问题 1 《数学教学》2 0 0 3年第 2期“数学问题与解答”栏目中的第 5 80题为设a、b、c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b≥ 32 .①笔者试图探索这个新颖不等式的上界 ,得出问题 1 .1 设a ,b,c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b<73 .②综合不等式①、②得问题 1 .2 设a ,b,c为△ABC的三边 ,求证 :32 ≤ a2a +b -c+b2b +c -a+c2c+a -b<73 .③为了证明不等式③ ,笔者首先想到了它的类似 :问题 1 .3 设x ,y ,z为任意正实数 ,求证 :xy +z+yz +x+zx +y≥ 32 .④于是 ,联想到 :能否将不等式③转化为三…  相似文献   

10.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

11.
新版高中数学教材第二册 (上 )有这样几道习题 .第 1 1页习题 6 .2第 1题 ,求证 :(a + b2 ) 2 ≤ a2 + b22 可以改写成 a2 + b2 ≥(a + b) 22 .第 1 6页习题 6 .3第 1 (2 )题 ,求证 :a2 + b2+ c2≥ ab+ bc+ ca可以变形为 :3 (a2 + b2 +c2 )≥ a2 + b2 + c2 + 2 (ab+ bc+ ca) ,所以 a2+ b2 + c2≥ (a + b+ c) 23 .第 3 1页第 5题 ,求证 :3 (1 + a2 + a4 )≥ (1+ a + a2 ) 2 ,则是上题的一个特例 .由此 ,我们可以推广之 ,得 :定理 :ai∈ R,i =1 ,2 ,… ,n,则当 n≥ 2时∑ni=1a2i ≥(∑ni=1ai) 2n (1 )证明 :用数学归纳法n =2时 ,a21+ a22 ≥ …  相似文献   

12.
贵刊 2 0 0 3年第 4期《轮换对称不等式的证明技巧》一文中例 8和例 1 0的证明犯了一个常识性错误 .为方便叙述 ,把原文摘录如下 :例 8 已知a ,b,c∈R+ ,求证 :ab+c+ba +c+ca +b≥ 32 .分析 :将常数 32 均匀分解到左式各项中 ,待证不等式等价于ab+c-12 +ba +c-12 +ca +b-12 ≥ 0 ,( )由a ,b ,c的对称性 ,不妨设a≥b≥c>0 ,则( )左边 =2a -b -c2 (b+c) +2b -a -c2 (a +c) +2c -a -b2 (a +b)≥2a -b -c+2b -a -c+2c-a -b2 (a +b) =0 .很明显 ,原作者在这里使用了放缩技巧 ,但当 2b-a -c<0时 ,放缩方向刚好相反 ,因而证明是错误的 .同样在…  相似文献   

13.
题1:设a>1,b>1,求证:a2/b-1+b2/a-1≥8.(第26届独联体数学奥林匹克竞赛题) 题2:已知实数a>1,b>1,c>1.求证:a3/b2-1+b3/c2-1+c3/a2-1≥9(√3)/2.当且仅当a=b=c时,等号成立(<数学通报>2000年第11期数学问题解答1284).  相似文献   

14.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

15.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

16.
全国十年制统编教材高中三册,P41第六题: l)求证:故: 二3(a一b)(b一c)(c一a)(a一b)’+(b一e)3+(e一a)3 (a一b)(b一c)(c一a)3(a一b)(b一c)(c一a).=劣s+夕8+之s一3劣夕之夕之2)求证:l劣夕:==‘“+夕+之)(戈2+夕2+之. 一劣夕一夕z一之劣) 上面两题分别用三阶行列式的对角线法则和性质是不难证明的. .对比(z)和(2)得: 劣s+夕。+之8一3劣92=(火+,+之)(xZ+夕名 +矛一%g一yz一之x)(A) 我们还注意到(在实数域中) 二:+。:+:忍一,。一;:一二一合。(:一v)2 一(a一b)(b一c)(c一a)一“例2)化简:sinoa+sins(a+120.)+sin3(a+240.解:’.’sina+sin(a+120。…  相似文献   

17.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

18.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

19.
在《数学教学》2 0 0 1年第 6期数学问题栏的第 548题为 :问题 1 设△ ABC的三边长为 a,b,c,求证 :b+ c- aa + c+ a- bb +a+ b- cc >2 2 . ( 1 )《中学数学月刊》在 2 0 0 2年第 1 1期第2 9页上用换元法给出了此题又一简捷证法 ,笔者想到的是 ( 1 )的一个类似不等式 .问题 2 在△ABC中 ,三边长为 a,b,c,求证 :c+ a- ca + a+ b- cb + b+ c- ac ≤ 3.( 2 )证明 采用化分式为整式、化无理为有理进行逐步转化 .c+ a- ba + a+ b- cb + b+ c- ac ≤ 3 bc( c+ a- b) + ca( a+ b- c) +ab( b+ c- a)≤ 3abc [bc( c+ a- b) + ca( a+ b- c) +ab(…  相似文献   

20.
盛宏礼老师在<数学通报>数学问题与解答栏提出如下两个问题: 2007年第3期数学问题1665:设a,b,c是△ABC的三边,求证:2a+c-b/2a+b-c +2b+aa-c/2b+c-a + 2c+b-a/2c+a=b≥3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号