首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过本实验研究得出以下结论:力竭运动后L组RBCM Na -K ATP酶活性增加,提示适宜负荷的运动训练不但可提高安静时酶活性,且可增强其活性的储备力.H组酶活性受其膜组成及物理特性改变的影响而下降,反过来又影响膜特性及功能,提示大负荷训练造成的膜理化性质的改变是相互关联的.运动训练对Ca2 -ATP酶活性无明显影响,H组活性的下降与其RBCM上脂质组成及其膜流动性的变化有关.  相似文献   

2.
不同负荷运动训练对大鼠红细胞膜的影响   总被引:2,自引:0,他引:2  
通过本实验研究得出以下结论力竭运动后L组RBCMNa+-K+ATP酶活性增加,提示适宜负荷的运动训练不但可提高安静时酶活性,且可增强其活性的储备力.H组酶活性受其膜组成及物理特性改变的影响而下降,反过来又影响膜特性及功能,提示大负荷训练造成的膜理化性生质的改变是相互关联的.运动训练对Ca2+-ATP酶活性无明显影响,H组活性的下降与其RBCM上脂质组成及其膜流动性的变化有关.  相似文献   

3.
通过本实验研究得出以下结论:力竭运动后小负荷游泳训练组RBCM Na -K ATP酶活性增加,提示适宜负荷的运动训练不但可提高安静时酶活性,且可增强其活性的储备力.大负荷游戏训练组酶活性受其膜组成及物理特性改变的影响而下降,反过来又影响膜特性及功能,揭示大负荷训练造成的膜理化性质的改变是相互关联的.运动训练对Ca2 -ATP酶活性无明显影响,H组活性的下降与其RBCM上脂质组成及其膜流动性的变化有关.  相似文献   

4.
以大鼠递增负荷力竭性运动为模型,观察了牛磺酸(taurine)对力竭运动时骨骼肌红肌线粒体自由基代谢和Na^ ,K^ —ATP酶活性的影响。结果显示:力竭运动后即刻,红肌线粒体SOD活性和GSH含量显著下降、Na^ ,K^ —ATP酶活性有下降的趋势,补充牛磺酸能阻止SOD活性下降和维持GSH的水平,并使Na^ ,K^ —ATP酶活性明显升高,提示力竭运动使红肌线粒体自由基代谢加强,牛磺酸的抗氧化作用在一定程度上对运动过程中增加的氧自由基具有清除作用,使Na^ ,K^ —ATP酶活性升高有助于保持酶活性的稳定性,牛磺酸在一定程度上改善线粒体膜转运Na^ ,K^ 的能力。  相似文献   

5.
通过不同负荷运动训练实验,结果表明:1)小负荷的运动训练可以降低安静时RBCM上MDA含量,提高其抗氧化酶SOD活性,大负荷的训练则产生相反的结果.2)小负荷的运动训练通过改善RBCM脂质组成,增加P/C比值,增强其抗氧化能力等RBCM流动性,使红细胞的变形能力加强,有利于其运氧功能的发挥.3)RBCM上SA含量的力竭运动后均下降,训练后H组RBCM上SA也下降,提示老年红细胞的比例增加,整体携氧能力下降.  相似文献   

6.
通过建立大鼠过度训练模型,探讨了过度训练对大鼠心肌线粒体膜上功能酶活性的影响。经过6周递增负荷训练后,运动组大鼠呈过度训练状态,心肌线粒体自由基生成增多,抗氧化酶活性下降,导致线粒体膜发生脂质过氧化,Na -K -ATP酶和Ca2 -Mg2 -ATP酶活性下降。  相似文献   

7.
以大鼠递增负荷力竭性运动为模型,观察了牛磺酸(taurine)对力竭运动时骨骼肌红肌线粒体自由基代谢和Na+,K+-ATP酶活性的影响。结果显示:力竭运动后即刻,红肌线粒体SOD活性和GSH含量显著下降、Na+,K+-ATP酶活性有下降的趋势,补充牛磺酸能阻止SOD活性下降和维持GSH的水平,并使Na+,K+-ATP酶活性明显升高,提示力竭运动使红肌线粒体自由基代谢加强,牛磺酸的抗氧化作用在一定程度上对运动过程中增加的氧自由基具有清除作用,使Na+,K+-ATP酶活性升高有助于保持酶活性的稳定性,牛磺酸在一定程度上改善线粒体膜转运Na+,K+的能力。  相似文献   

8.
目的:观察递增负荷跑台训练及补充左旋肉碱对力竭运动大鼠骨骼肌线粒体H+K+-ATPase活性的影响.方法:健康雄性Wister大鼠50只,随机分为安静对照组(A),一次性力竭组(B),单纯左旋肉碱组(L)、单纯运动组(E)和训练结合补充左旋肉碱组(LE).差速离心提取骨骼肌线粒体;分光光度测定线粒体H+K+-ATPase活性.结果:外源性补充左旋肉碱和运动应激均显著增加线粒体左旋肉碱结合含量(P<0.05);E组和LE组H+K+A-TPase合成活力均显著高于A组(P<0.05),且L组显著高于E组(P<0.05).结论:外源性补充左旋肉碱可能通过增加线粒体呼吸链电子传递速率,提高运动中线粒体H+K+-ATPase活性和ATP的再合成能力.  相似文献   

9.
对大鼠进行一个月的运动训练发现,大、小两种不同负荷的训练可造成红细胞膜氧化、抗氧化能力的变化,进而对其整体机能产生不同的影响。通过本实验研究得出以下结论:①一次急性运动可造成红细胞的破坏增多,但小负荷的运动训练可以通过增强机体的抗氧化能力,改善红细胞膜性能等途径,使其有氧代谢能力及抵抗力竭运动造成损伤的能力均提高.大负荷的训练结果不但使红细胞的破坏增加,且单个红细胞的机能也明显下降,在训练结束后可能发生运动贫血。②大负荷训练后侧流动性下降,与其MDA含量及SOD活性的变化高度相关。  相似文献   

10.
为了探讨不同负荷运动训练对机体心血管系统内分泌功能的影响,以大鼠为运动模型进行为期8周不同负荷的运动训练,测定其血浆肾上腺髓质素(ADM)、内皮素(ET)含量.结果表明:1)长期中等负荷的运动训练后血浆ET、ADM含量增加且呈正相关;2)长期大负荷的运动训练会导致机体血浆ET含量显著增高,ADM含量显著下降.结论:长期中等负荷的运动训练可促进ET、ADM分泌适度增加,对机体产生有益的影响;长期大负荷运动训练可导致两种血管活性肽的分泌失衡,对健康不利.  相似文献   

11.
通过实验研究得出以下结论:1)一次急性运动可造成红细胞的破坏增多,但小负荷的运动训练可以通过增强机体的抗氧化能力,改善红细胞膜性等途径,最终增加动物血液中红细胞的数量,使其有氧代谢能力及抵抗力竭运动造成的能力均提高.大负荷的训练结果不但使红细胞的破坏增加,且单个红细胞的机能也明显下降,在训练结束后可能发生运动贫血.2)大负荷训练后RBCM流动性下降,与其MDA含量及SOD活性的变化高度相关.  相似文献   

12.
目的:探讨过度训练对肠道slgA和血浆内毒素含量的影响及其谷氨酰胺的干预作用和机制.方法:实验大鼠随机分为对照组、过度训练组、谷氨酰胺干预组,过度训练组大鼠进行每周6次,共9周的力竭性运动训练,谷氨酰胺干预组大鼠在大负荷运动之前按1.5 g/kgBW剂量补充谷氨酰胺,9周后,检测各组大鼠小肠slgA、Gln、MDA的含量及SOD活性.结果:1)与对照组比较,过度训练组大鼠小肠sIgA含量显著下降;且小肠SOD活性、Gln含量显著下降,MDA含量显著升高.2)与过度训练组相比,Gln干预组小肠slgA和Gln的含显著升高,虽然SOD活性没有显著性变化,大鼠小肠组织中MDA含量显著降低.结论:1)过度训练导致大鼠肠道体液免疫功能显著下降;过度训练时大鼠肠道Gln水平下降和自由基代谢的增强,可能是过度训练引起肠道免疫功能降低的主要机制.2)补充Gln可改善长期大负荷运动训练大鼠肠道体液免疫功能;而Gln的补充可使大负荷训练大鼠肠道Gln含量升高和氧自由基生成减少,可能是Gln补充防止大负荷训练大鼠肠道体液免疫功能下降的主要机制.  相似文献   

13.
目的:探讨运动性免疫失衡对骨髓B细胞分化、发育的影响。方法:SPF级雄性SD大鼠128只,随机分成绝对安静组(Absolute control,C)组,运动前安静组(Control,A)、运动后即刻组(ImmediateI,)、运动后3h组(3 Hours,3H),进行6周递增负荷跑台运动,分别在第0、2、46、周用流式细胞术检测其骨髓中Pro B、Pre B细胞数量及凋亡率。结果:六周递增负荷运动过程中,在第0周pro B、pre B细胞数量及凋亡率均没有显著性变化。第2周J组,pro B数量呈显著性下降(P<0.05),pre B呈非常显著性下降(P<0.01),3H组基本恢复到A组(P>0.05)。4周J组6、周J组pro B、pre B呈显著性下降(P<0.05),3H组基本恢复到A组,而同一时相的凋亡率变化则呈相反趋势。结论:提示六周递增运动过程中,机体根据运动需要,通过改变凋亡率,进而改变早期发育中B细胞的数量百分比,以求尽可能维持免疫稳态;并发现pre B细胞对运动负荷更敏感,易受运动的刺激而发生凋亡,细胞数量百分比显著性下降。  相似文献   

14.
补充抗氧化剂对力竭运动大鼠脑中自由基代谢的影响   总被引:7,自引:1,他引:7  
为了探讨力竭性运动以及抗氧化剂营养干预对大鼠脑组织自由基代谢的影响,对抗氧化剂干预和运动对照组大鼠进行的游泳力竭游泳运动实验,测定各组大鼠大脑和小脑组织中的MDA、SOD及GSH-Px活性.结果表明:力竭组大鼠大脑中SOD、GSH-Px活性明显下降;小脑中GSH-Px活性下降;补充抗氧化剂组大鼠大脑SOD、GSH-Px活性显著高于力竭组;小脑中GSH-Px活性显著高于力竭组,其它指标无显著变化.结果提示,力竭性运动大鼠脑组织抗氧化酶活性有一定抑制作用,但MDA变化不明显;补充抗氧化剂可以提高脑组织的抗氧化酶的活性,对提高脑组织的抗氧化能力具有积极意义.  相似文献   

15.
目的:探讨维生素E、维生素C和硒联合抗氧化剂对负荷游泳力竭运动后即刻及恢复期大鼠心肌的影响.方法:将42只大鼠随机分为空白对照组(A组)、力竭游泳组(B组)和抗氧化剂保护组(C组).A、B组常规喂养,C组灌喂维生素E、维生素C和硒制剂,六周后,B、C组完成一次性力竭游泳训练,测定其安静时、运动后即刻、6小时和24小时心肌组织及血清SOD、GSH-Px、MDA、CK、Ca2 等指标.结果:B、C组与A组比较,出现运动后SOD、GSH-Px活性下降、MDA增高、心肌钙超载等变化,尤以运动后6h为明显;运动后C组心肌GSH-Px活性较B组高,MDA和Ca2 水平和血清CK活性显著低于B组. 结论:维生素E、维生素C和硒联合抗氧化剂能有效减轻运动后恢复期大鼠心肌组织SOD、GSH-Px活性下降、MDA、CK的增加及心肌细胞Ca2 超载,提示对心肌运动后损伤有积极的保护作用.  相似文献   

16.
将大鼠分为训练组和服药训练组 ,在两周内采用强度为 35 m/ s,坡度为 0的跑台训练 ,训练后进行速度为 38m/ s,坡度为 0的运动 35 min。服药组大鼠训练期间同时灌服中药。从测定红细胞内抗氧化酶活性Na+ ,K+ - ATP酶活性入手 ,探讨训练及大强度运动对大鼠红细胞氧自由基代谢状况发生变化的可能原因。研究表明 ,训练使大鼠红细胞内 SOD代谢情况发生适应性变化 ;大强度运动后 GPX活性的上升有助于细胞内 H2 O2 快速转化为 H2 O的能力 ;抗疲劳中药在一定程度上对训练中增加的氧自由基具有清除作用 ;训练鼠大强度运动后 Na+ ,K+ - ATP酶活性的升高有助于保持酶活性的稳定 ,抗疲劳中药在一定程度上改善红细胞膜转运 Na+ ,K+的能力。  相似文献   

17.
为探讨"复方抗氧化制剂"及运动训练对大鼠骨骼肌谷胱甘肽抗氧化系统的影响,给训练大鼠补充"复方抗氧化制剂",结果显示:训练组、补充组大鼠在安静状态骨骼肌中GSH-PX活性、GSH含量都明显高于对照组(P<0.05),GST活性与对照组相比变化不明显,在定量负荷运动后,GSH含量都明显高于对照组(P<0.05),在力竭运动后GSH含量、GST活性都明显高于对照组(P<0.05).提示:"复方抗氧化制剂"能够并协同运动训练增强大鼠骨骼肌谷胱甘肽抗氧化系统能力,提高机体抗氧化能力.  相似文献   

18.
全面系统的研究了优秀跆拳道运动员上下肢的等速力量,有氧和无氧代谢能力,以及负荷前后某些生理、生化指标特性的实验工作。并与优秀拳击运动员和优秀田径运动员进行了对照。研究结果提示,路拳道运动员在日常传统训练基础上应建立一个新概念,即高度重视大腿后群肌群的快速反应和爆发力的素质训练,这对于中、低水平运动员更为重要。实验结果还表明,优秀跆拳道运动员安静时血清睾酮水平较高,运动后10min内保持高水平的LDH酶活性。LDH2运动后略有增加,安静时LDH3.4.5水平较高,运动后LDH。。活性增加。提示跆拳道运动员既要求有很好的无氧功能,又要求有较高的有氧代谢能力。优秀跆拳道运动员运动能力与体内血清皮质醇、胆固醇、宰酮等指标存在因果关系。提示路拳道运动员的选才和训练工作应注意这些相关指标的应用。  相似文献   

19.
针刺力竭肌或延迟性结构损伤肌可促使细胞内增高的Ca~(2+)迅速下降。为探讨针刺的降Ca途径,观察了针刺对肌浆网Ca,Mg—ATP酶、肌膜Ca,Mg—ATP酶和Na,K—ATP酶的影响。研究发现,长时间重复收缩至力竭后、蛙腓肠肌三酶活性分别下降60%、30%、55%。休息24h酶活性仅略有恢复。如力竭后即刻给予肌肉针刺,酶活性恢复加快,然而针后即刻,不论力竭肌还是延迟性结构损伤肌,肌膜、肌浆网Ca,Mg—ATP酶总酶活性均无改变(Ca—ATP酶活性下降,Mg—ATP酶活性上升),但Na,K—ATP酶活性显著上升。结果表明:针刺运动性损伤肌的降Ca作用与肌浆网、肌膜Ca泵主动转运功能无关,但针刺能促进Mg-ATP酶(基酶)活性迅速恢复及肌膜Na—K泵的主动转运。  相似文献   

20.
目的:采用大鼠8周递增负荷游泳训练模型,探讨不同负荷运动对大鼠心肌超微结构的影响,以及引起心肌、血清中NO、NOS变化的原因。方法:纯种健康雄性SD大鼠36只,按体重随机分为对照组、适宜负荷组、过度负荷组,观察8周游泳训练后大鼠心肌超微结构及心肌、血清中NO、NOS的变化。结论:1)不同负荷的游泳训练可以提高大鼠心肌、血清中NO的含量;2)适宜负荷的游泳训练可以提高大鼠心肌、血清中cNOS活性,改善大鼠心肌超微结构,提高心血管系统的功能,推测适宜负荷的游泳训练提高大鼠心肌、血清中cNOS的活性可能有利于大鼠心肌超微结构的改善;3)长时间过度负荷的游泳训练可以使大鼠心肌、血清中iNOS活性升高,大鼠心肌超微结构损伤,使心血管系统功能下降,推测过度负荷的游泳训练引起的大鼠心肌超微结构损伤可能与大鼠心肌、血清中iNOS活性的升高有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号