首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3?±?0.74 years; 49 boys: 12.5?±?0.76 years; 51 girls: 12.2?±?0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100?m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model's goodness-of-fit; x2/df?=?3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.  相似文献   

2.
The present study aimed to examine how high- and low-speed swimmers organise biomechanical, energetic and coordinative factors throughout extreme intensity swim. Sixteen swimmers (eight high- and eight low-speed) performed, in free condition, 100-m front crawl at maximal intensity and 25, 50 and 75-m bouts (at same pace as the previous 100-m), and 100-m maximal front crawl on the measuring active drag system (MAD-system). A 3D dual-media optoelectronic system was used to assess speed, stroke frequency, stroke length, propelling efficiency and index of coordination (IdC), with power assessed by MAD-system and energy cost by quantifying oxygen consumption plus blood lactate. Both groups presented a similar profile in speed, power output, stroke frequency, stroke length, propelling efficiency and energy cost along the effort, while a distinct coordination profile was observed (F(3, 42) = 3.59, = 0.04). Speed, power, stroke frequency and propelling efficiency (not significant, only a tendency) were higher in high-speed swimmers, while stroke length and energy cost were similar between groups. Performing at extreme intensity led better level swimmers to achieve superior speed due to higher power and propelling efficiency, with consequent ability to swim at higher stroke frequencies. This imposes specific constraints, resulting in a distinct IdC magnitude and profile between groups.  相似文献   

3.
This study examined arm and leg coordination and propulsion during the flat breaststroke in nine elite male and eight elite female swimmers over three race paces (200?m, 100?m and 50?m). Coordination was expressed using four temporal gaps (T1, T2, T3, T4), which described the continuity between the propulsive phases of the limbs, as recorded on a video device (50 Hz). Glide duration was denoted T1, the time between the beginning of arm and leg recovery was denoted T2, the time between the end of arm and the leg recovery was denoted T3, and the time between 90° of flexion during arm recovery and 90° during leg recovery was denoted T4. Using these temporal gaps, four stroke phases (propulsion, glide, recovery and leg insweep) could be followed over a complete arm and leg stroke. The total duration of arm and leg propulsion was assessed by a new index of flat breaststroke propulsion (IFBP). Velocity, stroke rate and stroke length were also calculated for each pace. The elite swimmers showed short T2, T3 and T4; moreover, T1 decreased when the pace increased. Expertise in the flat breaststroke was thus characterized by synchronized arm and leg recoveries and increased continuity in the arm and leg propulsions with increasing velocity. Differences between the sexes in the spatio-temporal parameters were possibly due to anthropometric differences (the men were heavier, older and taller than the women) and different motor organization linked to arm and leg coordination (shorter T3, body glide and body recovery, and greater body propulsion and higher IFBP in the men). The men's propulsive actions showed greater continuity, particularly in the sprint. The best men adopted a superposition coordination and thus had the ability to overcome very great active drag. Temporal gap measurement and the IFBP are practical indicators of arm and leg coordination and propulsion that can be exploited by coaches and swimmers to increase the continuity between propulsive actions during the flat breaststroke.  相似文献   

4.
This study examined arm and leg coordination and propulsion during the flat breaststroke in nine elite male and eight elite female swimmers over three race paces (200 m, 100 m and 50 m). Coordination was expressed using four temporal gaps (T1, T2, T3, T4), which described the continuity between the propulsive phases of the limbs, as recorded on a video device (50 Hz). Glide duration was denoted T1, the time between the beginning of arm and leg recovery was denoted T2, the time between the end of arm and the leg recovery was denoted T3, and the time between 90 degrees of flexion during arm recovery and 90 degrees during leg recovery was denoted T4. Using these temporal gaps, four stroke phases (propulsion, glide, recovery and leg insweep) could be followed over a complete arm and leg stroke. The total duration of arm and leg propulsion was assessed by a new index of flat breaststroke propulsion (IFBP). Velocity, stroke rate and stroke length were also calculated for each pace. The elite swimmers showed short T2, T3 and T4; moreover, T1 decreased when the pace increased. Expertise in the flat breaststroke was thus characterized by synchronized arm and leg recoveries and increased continuity in the arm and leg propulsions with increasing velocity. Differences between the sexes in the spatio-temporal parameters were possibly due to anthropometric differences (the men were heavier, older and taller than the women) and different motor organization linked to arm and leg coordination (shorter T3, body glide and body recovery, and greater body propulsion and higher IFBP in the men). The men's propulsive actions showed greater continuity, particularly in the sprint. The best men adopted a superposition coordination and thus had the ability to overcome very great active drag. Temporal gap measurement and the IFBP are practical indicators of arm and leg coordination and propulsion that can be exploited by coaches and swimmers to increase the continuity between propulsive actions during the flat breaststroke.  相似文献   

5.
The purpose of this study was to learn the interplay between dry-land strength and conditioning, and stroke biomechanics in young swimmers, during a 34-week training programme. Twenty-seven swimmers (overall: 13.33?±?0.85 years old; 11 boys: 13.5?±?0.75 years old; 16 girls: 13.2?±?0.92 years old) competing at regional- and national-level competitions were evaluated. The swimmers were submitted to a specific in-water and dry-land strength training over 34 weeks (and evaluated at three time points: pre-, mid-, and post-test; M1, M2, and M3, respectively). The 100-m freestyle performance was chosen as the main outcome (i.e. dependent variable). The arm span (AS; anthropometrics), throwing velocity (TV; strength), stroke length (SL), and stroke frequency (SF; kinematics) were selected as independent variables. There was a performance enhancement over time (M1 vs. M3: 68.72?±?5.57?s, 66.23?±?5.23?s; Δ?=??3.77%; 95% CI: ?3.98;?3.56) and an overall improvement of the remaining variables. At M1 and M2, all links between variables presented significant effects (p?p?≤?.05). Between M1 and M3, the direct effect of the TV to the stroke biomechanics parameters (SL and SF) increased. The model predicted 89%, 88%, and 92% of the performance at M1, M2, and M3, respectively, with a reasonable adjustment (i.e. goodness-of-fit M1: χ2/df?=?3.82; M2: χ2/df?=?3.08; M3: χ2/df?=?4.94). These findings show that strength and conditioning parameters have a direct effect on the stroke biomechanics, and the latter one on the swimming performance.  相似文献   

6.
The aim of this study was to assess the effect of the hand’s acceleration on the propulsive forces and the relative contribution of the drag and lift on their resultant force in the separate phases of the front crawl underwater arm stroke. Ten female swimmers swam one trial of all-out 25-m front crawl. The underwater motion of each swimmer’s right hand was recorded using four camcorders and four periscope systems. Anatomical landmarks were digitised, and the propulsive forces generated by the swimmer’s hand were estimated from the kinematic data in conjunction with hydrodynamic coefficients. When the hand’s acceleration was taken into account, the magnitude of the propulsive forces was greater, with the exception of the mean drag force during the final part of the underwater arm stroke. The mean drag force was greater than the mean lift force in the middle part, while the mean lift force was greater than the mean drag force in the final part of the underwater arm stroke. Thus, swimmers should accelerate their hands from the beginning of their backward motion, press the water with large pitch angles during the middle part and sweep with small pitch angles during the final part of their underwater arm stroke.  相似文献   

7.
ABSTRACT

The aim of this study was to propose a group of parameters able to quantify not only arm coordination but also inter limb coordination. These include the well know index of coordination with the relative duration of the stroke phases and two new parameters: the Index of synchronization (Ids) between arms and legs actions; and the Index of inter limb coordination (IdIC) calculated as the relative foot position during successive arm stroke phases. These parameters were compared between experts and amateur swimmers in a maximal front crawl sprint. The influence of arm stroke in leg kick parameters was also assessed, comparing the full stroke condition with a condition without arms actions. Sixty-five per cent of expert swimmers used synchronized limb actions while 95% of amateur swimmers used non-synchronized limb motions. These synchronized expert swimmers also converged towards a specific coordination pattern between foot position and arm stroke phases. In the condition without arms, both groups changed kick rate and amplitude. The present study reveals the interdependency of arms and legs actions and the importance of coordination and synchronization between limbs. Therefore, the proposed group of overall indexes of coordination provides a more complete marker for the analysis of swimming technique.  相似文献   

8.
ABSTRACT

Swimmers with limb deficiency are a core population within Para Swimming, accordingly this study examined the contribution of limb segments to race performance in these swimmers. Data were obtained for 174 male Para swimmers with limb deficiency. Ensemble partial least squares regression showed accurate predictions when using relative limb segment lengths to estimate Para swimmers’ personal best race performances. The contribution of limb segments to performance in swim events was estimated using these regression models. The analysis found swim stroke and event distance to influence the contributions of limb segments to performance. For freestyle swim events, these changes were primarily due to the increased importance of the hand, and decreased importance of the foot and shank, as the distance of the event increased. When comparing swim strokes, higher importance of the thigh and shank in the 100 m breaststroke compared with other swim strokes confirms the separate SB class. Varied contributions of the hand, upper arm and foot suggest that freestyle could also be separated from backstroke and butterfly events to promote fairer classification. This study shows that swim stroke and event distance influence the activity limitation of Para swimmers with limb deficiency suggesting classification should account for these factors.  相似文献   

9.
Abstract

The purpose of this study was to characterize changes and variability in test performance of swimmers within and between seasons over their elite competitive career. Forty elite swimmers (24 male, 16 female) performed a 7×200-m incremental swimming step test several times each 6-month season (10±5 tests, spanning 0.5–6.0?y). Mixed linear modeling provided estimates of percent change in the mean and individual responses (within-athlete variation as a coefficient of variation) for measures based on submaximal performance (fixed 4-mM lactate), maximal performance (the seventh step) and lean mass (from skinfolds and body mass). Submaximal and maximal swim speed increased within each season from pre to taper phase by ~2.2% for females and ~1.5% for males (95% confidence limits ±1.0%), with variable contributions from stroke rate and stroke length. Most of the gains in speed were lost in the off-season, leaving a net average annual improvement of ~1.0% for females and ~0.6% for males (±1.0%). For submaximal and maximal speed, individual variation between phases was ±2.2% and the typical measurement error was ±0.80%. Step test and anthropometric measures can be used to confidently monitor progressions in swimmers in an elite training program within and between seasons.  相似文献   

10.
Abstract

Stroke-coordination and symmetry influence the force fluctuations within any net drag force profile. The aim of this study was to analyse elite (FINA points 938) backstroke swimmers stroke-coordination using an instantaneous net drag force and timing protocols using a symmetry index tool. Ten male and nine female elite backstroke swimmers completed three maximum speed trials and five maximum speed net drag force swimming trials. Net drag force was measured using an assisted motorised dynamometer device. Each trial was filmed using three genlocked 50 Hz cameras, synchronised to the net drag force output from the force-platform. This methodology enabled the comparison of stroke-coordination timing symmetry index to net drag force symmetry index. The timing symmetry index and net drag force symmetry index yielded different results, the timing reflects the stroke-coordination, whilst the force index identified the effectiveness of the stroke. The only variable that was significantly different when comparing left and right stroke patterns was the location of minimum net drag forces. Conversely, gender influenced the location of maximum net drag force. Relationship analysis identified that location of maximum net drag force production was the only variable to correlate with speed within this cohort. Backstroke arm coordination was minimally influenced by gender.  相似文献   

11.
选择10名广州大学高水平男子游泳运动员为研究对象,采用测力板、高速摄像机等仪器设备同步采集运动学和动力学参数资料,对游泳接力项目中常用的两种接跳出发技术进行对比分析,选择更适宜接力项目的摆臂式出发技术对自由泳成绩最好的4名运动员进行为期4周的接跳训练,籍以探讨两种接跳出发技术的优劣及摆臂式出发技术训练对接跳时间的成效.结果表明,摆臂式出发技术相对于抓台式出发技术具有较大起跳角度、垂直速度和起跳作用力,入水阻力小,在入水距离、出发10m时间具有较大的优势,更适合游泳接力的项目特点,更适宜在游泳接力项目中使用.实验证明,运动员经过较长时间的接跳训练,采用摆臂式出发技术可以明显提高游泳接力项目的接跳时间.  相似文献   

12.
Effect of expertise on butterfly stroke coordination   总被引:1,自引:0,他引:1  
The aim of this study was to compare the arm-to-leg coordination in the butterfly stroke of three groups of male swimmers of varying skill (10 elite, 10 non-elite, and 10 young swimmers) at four race paces (400-m, 200-m, 100-m, and 50-m paces). Using qualitative video analysis and a hip velocity-video system (50 Hz), key events of the arm and leg movement cycles were defined and four-point estimates of relative phase were used to estimate the arm-to-leg coordination between the propulsive (pull and push of arms and downward movement of leg undulation) and non-propulsive phases (entry, catch, and recovery of arms and upward movement of leg undulation). With increasing race pace, the velocity, stroke rate, and synchronization between the arm and leg key points also increased, indicating that velocity and stroke rate may operate as control parameters. Finally, these changes led to greater continuity between the propulsive actions, which is favourable for improving the swim velocity, suggesting that coaches and swimmers should monitor arm-to-leg coordination.  相似文献   

13.
The purpose of this study was to compare arm–leg coordination and kinematics during 100 m breaststroke in 26 (8 female; 18 male) specialist breaststroke swimmers. Laps were recorded using three 50-Hz underwater cameras. Heart rate and blood lactate were measured pre- and post-swim. Arm–leg coordination was defined using coordination phases describing continuity between recovery and propulsive phases of upper and lower limbs: coordination phase 1 (time between end of leg kick and start of the arm pull phases); and coordination phase 2 (time between end of arm pull and start of leg kick phases). Duration of stroke phases, coordination phases, swim velocity, stroke length (SL), stroke rate (SR) and stroke index (SI) were analysed during the last three strokes of each lap that were unaffected by turning or finishing. Significant changes in velocity, SI and SL (P < 0.05) were found between laps. Both sexes showed significant increase (P < 0.05) in heart rate and blood lactate pre- to post-swim. Males had significantly (P < 0.01) faster swim velocities resulting from longer SLs (P = 0.016) with no difference in SR (P = 0.064). Sex differences in kinematic parameters can be explained by anthropometric differences providing males with increased propelling efficiency.  相似文献   

14.
采用文献资料法,专家访谈法,数理统计法,实验研究等,以江苏省15~17岁年龄组游泳运动员为实验对象。依据实验前测数据,按不同性别、泳式和运动水平进行编组,将实验对象平均分为实验组和对照组,在常规的体能训练中进行为期12周的悬吊训练实验。对实验前后受试者各项指标的变化情况进行对比分析,结果显示实验组的测试指标成显著性差异(P<0.05),悬吊训练(S-E-T)对提高游泳运动员的专项成绩具有积极的意义。  相似文献   

15.
Abstract

This study used both an instantaneous net drag force profile and a symmetry timing to evaluate the effect of the breathing action on stroke coordination. Twenty elite swimmers completed a total of six randomised front-crawl towing trials: (i) three breathing trials and (ii) three non-breathing trials. The net drag force was measured using an assisted towing device mounted upon a Kistler force platform, and this equipment towed the swimmer at a constant speed. The net drag force profile was used to create a stroke symmetry index for each swimming trial. Analysis using the symmetry indices identified that the majority of participants demonstrated an asymmetrical instantaneous net drag force stroke profile in both the breathing and non-breathing conditions, despite no significant differences in the time from finger-tip entry to finger-tip exit. Within the breathing condition, the faster swimmers compared to the slower swimmers demonstrated a lesser percentage of overlap between stroke phases on their breathing stroke side. During the non-breathing condition, the faster participants compared to the slower swimmers recorded a reduction in the percentage of overlap between stroke phases and less duration in the underwater stroke on their breathing stroke side. This study identified that the majority of participants demonstrated an asymmetrical net drag force profile within both conditions; however, asymmetry was less prevalent when examining with only the timing symmetry index.  相似文献   

16.
The purpose of this study was to estimate the optimal body size, limb-segment length, girth or breadth ratios for 100-m backstroke mean speed performance in young swimmers. Sixty-three young swimmers (boys [n = 30; age: 13.98 ± 0.58 years]; girls [n = 33; age: 13.02 ± 1.20 years]) participated in this study. To identify the optimal body size and body composition components associated with 100-m backstroke speed performance, we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. The multiplicative allometric model exploring the association between 100-m backstroke mean speed performance and the different somatic measurements estimated that biological age, sitting height, leg length for the lower-limbs, and two girths (forearm and arm relaxed girth) are the key predictors. Stature and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. In fact, it is only by adopting multiplicative allometric models that the abovementioned ratios could have been derived. These findings highlighted the importance of considering somatic characteristics of young backstroke swimmers and can help swimming coaches to classify their swimmers and enable them to suggest what might be the swimmers’ most appropriate stroke (talent identification).  相似文献   

17.
景晨 《体育科研》2019,(2):68-71
探讨手足相关派生指数与运动等级的相关度,为游泳运动员选材形态指标的精选提供理论依据。方法:对334名上海区级游泳学校、上海高校、上海市队、浙江省队游泳运动员手足表型进行测量统计并计算相应派生指数,对不同等级运动员手足面积表型与运动等级进行相关性分析。结果:男子游泳运动员手足面积表型与运动等级均无直线相关关系(相关系数小于0.3),女子足部派生指标与运动等级亦均无直线相关关系,仅手部面积Ⅰ表型与运动等级存在极显著性低度直线相关(P<0.01)。结论:手面积Ⅰ表型可入选女子游泳运动员二类选材指标。女子游泳运动员足面积表型和男子游泳员手足面积表型均不具备选材评价指标依据。  相似文献   

18.
A new device was designed to measure the active drag during maximal velocity swimming based on the assumption of equal useful power output in two cases: with and without a small additional drag. A gliding block was used to provide an adjustable drag, which was attached to the swimmer and measured by a force transducer. Six swimmers of national standard (3 males, 3 females) participated in the test. For the males, the mean active drag ranged from 48.57 to 105.88 N in the front crawl and from 54.14 to 76.37 N in the breaststroke. For the females, the mean active drag ranged from 36.31 to 50.27 N in the front crawl and from 36.25 to 77.01 N in the breaststroke. During testing, the swimmer's natural stroke and kick were not disturbed. We conclude that the device provides a useful method for measuring and studying active drag.  相似文献   

19.
为了解上海游泳项目后备队伍现状及发展趋势,对全市12所游泳学校运动员、教练员及训练状况进行调查。结果显示,存在低年级运动员训练时间偏多、运动量偏大;高年级运动员训练普遍不足地;二、三线全面技术、耐力等基础训练抓得不够;竞赛制度有缺陷,训练与文化学习的有矛盾、人才流失等现象,影响了上海游泳后备人才的培养。笔者对此提出若干对策建议。  相似文献   

20.
The aim of this study was to examine the effect of swimming speed on leg-to-arm coordination in competitive unilateral arm amputee front crawl swimmers. Thirteen well-trained swimmers were videotaped underwater during three 25-m front crawl trials (400 m, 100 m and 50 m pace). The number, duration and timing of leg kicks in relation to arm stroke phases were identified by video analysis. Within the group, a six-beat kick was predominantly used (n = 10) although some swimmers used a four-beat (n = 2) or eight-beat kick (n = 1). Swimming speed had no significant effect on the relative duration of arm stroke and leg kick phases. At all speeds, arm stroke phases were significantly different (P < 0.05) between the affected and unaffected sides. In contrast, the kicking phases of both legs were not different. Consequently, leg-to-arm coordination was asymmetrical. The instant when the leg kicks ended on the affected side corresponded with particular positions of the unaffected arm, but not with the same positions of the affected arm. In conclusion, the ability to dissociate the movements of the arms from the legs demonstrates that, because of their physical impairment, unilateral arm amputee swimmers functionally adapt their motor organisation to swim front crawl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号