首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroudBlood flow restriction (BFR) with low-intensity resistance training has been shown to result in hypertrophy of skeletal muscle. In this study, we tested the hypothesis that BFR during the rest periods between acute, high-intensity resistance exercise sessions (70% of 1 repetition maximum, 7 sets with 10 repetitions) enhances the effects of the resistance training.MethodsA total of 7 healthy young men performed squats, and between sets BFR was carried out on one leg while the other leg served as a control. Because BFR was applied during rest periods, even severe occlusion pressure (approximately 230 mmHg), which almost completely blocked blood flow, was well-tolerated by the participants. Five muscle-specific microRNAs were measured from the biopsy samples, which were taken 2 h after the acute training.ResultsDoppler data showed that the pattern of blood flow recovery changed significantly between the first and last BFR. microRNA-206 levels significantly decreased in the BFR leg compared to the control. The mRNA levels of RAC-β serine/threonine-protein kinase v22, nuclear respiratory factor 1, vascular endothelial growth factor, lupus Ku autoantigen protein p70 genes (p < 0.05), and paired box 7 (p < 0.01) increased in the BFR leg. The protein levels of paired box 7, nuclear respiratory factor 1, and peroxisome proliferator-activated receptor γ coactivator 1α did not differ between the BFR leg and the control leg.ConclusionBFR, during the rest periods of high-load resistance training, could lead to mRNA elevation of those proteins that regulate angiogenesis, mitochondrial biogenesis, and muscle hypertrophy and repair. However, BFR also can cause DNA damage, judging from the increase in mRNA levels of lupus Ku autoantigen protein p70.  相似文献   

2.
目的:探讨急性离心运动伴4种不同程度的血流限制对年轻女性外周疲劳及心脏自主神经功能的影响,综合评价各方案的安全性,为长期血流限制运动干预提供参考。方法:将40名女大学生随机分为4组,分别进行小强度抗阻(30%1RM)伴0%(CON组)、40%(BFR40组)、60%(BFR60组)和80%(BFR80组)动脉闭塞压(AOP)的血流限制运动。各小组进行4组伸膝离心运动,第1组重复30次,后3组重复15次,组间休息30 s。检测运动前、运动后即刻、15 min、30 min、1 h以及24 h的骨骼肌收缩性能(最大径向位移、收缩速度)、最大等长力量和心脏自主神经功能。结果:1)与CON组相比,BFR40组的副交感神经活性受到轻微抑制(P<0.05),可在运动后30 min内恢复(P>0.05);2)BFR60组的最大等长力量在运动后显著下降(P<0.01),副交感神经活性进一步抑制(P<0.01),交感神经支配增强(P<0.05),运动后30 min内恢复交感—副交感神经的平衡性(P>0.05);3)BFR80组运动后诱发显著的外周疲劳(P<0.01),使副交感恢复显著延迟,交感活性大幅增强(P<0.05),需更长时间恢复交感—副交感神经的平衡性(24 h内);4)相关性分析显示,副交感神经活性分别与最大径向位移(r=0.65)、收缩速度(r=0.62)和最大等长力量(r=0.55)呈正相关(P<0.05),交感神经活性与上述3个指标呈负相关(P<0.05)。结论:血流限制运动中,40%AOP会抑制迷走神经活性;60%AOP可明显影响交感神经活性和交感—副交感调控的平衡性;80%AOP可诱发显著的外周疲劳,且与心脏自主神经调控密切相关。综上所述,不建议心血管风险高的患者使用80%AOP训练。  相似文献   

3.
The aim of this study was to compare the effect of low-load resistance exercise (LLRE) with continuous and intermittent blood flow restriction (BFR) on the creatine kinase (CK), lactate dehydrogenase (LDH), protein carbonyl (PC), thiobarbituric acid-reactive substance (TBARS) and uric acid (UA) levels in military men. The study included 10 recreationally trained men aged 19 ± 0.82 years who underwent the following experimental protocols in random order on separate days (72–96 h): 4 LLRE sessions at a 20% 1RM (one-repetition maximum [1RM]) with continuous BFR (LLRE + CBFR); 4 LLRE sessions at 20% 1RM with intermittent BFR (LLRE + IBFR) and 4 high-intensity resistance exercise (HIRE) sessions at 80% 1RM. The CK and LDH (markers of muscle damage) levels were measured before exercise (BE), 24 h post-exercise and 48 h post-exercise, and the PC, TBARS and UA (markers of oxidative stress) levels were measured BE and immediately after each exercise session. There was a significant increase in CK in the HIRE 24 post-exercise samples compared with the LLRE + CBFR and LLRE + IBFR (P = 0.035, P = 0.036, respectively), as well as between HIRE 48 post-exercise and LLRE + CBFR (P = 0.049). Additionally, there was a significant increase in CK in the LLRE + CBFR samples BE and immediately after each exercise (Δ = 21.9%) and in the HIRE samples BE and immediately after each exercise, BE and 24 post-exercise, and BE and 48 post-exercise (Δ values of 35%, 177.6%, and 177.6%, respectively). However, there were no significant changes in LDH, PC, TBARS, and UA between the protocols (P > 0.05). Therefore, a physical exercise session with continuous or intermittent BFR did not promote muscle damage; moreover, neither protocol seemed to affect the oxidative stress markers.  相似文献   

4.
5.
目的:辟谷是包含热量限制、导引运动等元素的中国传统养生方法,本研究借鉴辟谷将热量限制与导引运动结合应用于中心性肥胖患者,以观察其临床疗效并探讨其可行性和安全性。方法:招募23名中心性肥胖受试者进行为期7天的综合干预,观测受试者干预前后体重、腰围、体重指数(BMI)、身体成分及生理生化指标的变化。结果:综合干预后受试者的体重、BMI、腰围、体脂量均非常显著性降低(P<0.01),但是骨骼肌、无脂体重显著减少(P<0.05)。血糖显著降低(P<0.01),心率、血压、甘油三酯、总胆固醇未显示统计学差异。肝、肾功能指标无明显异常,主观反馈无明显不良反应。结论:热量限制结合导引运动有效帮助中心性肥胖患者缓解肥胖、控制体重,但同时存在无脂体重流失的风险。这为进一步完善干预方案和深入机理研究提供了理论参考与实践基础。  相似文献   

6.
ABSTRACT

Purpose: The purpose of this study was to identify whether post-resistance exercise (REx) blood flow restriction (BFR) can elicit a similar acute training stimulus to that offered by either heavy REx or traditional low-load BFR REx. Method: Ten men completed trials with 30% one-repetition maximum (1RM) for 5 sets of 15 repetitions without BFR (30%), with BFR during exercise (30% RD), and with postexercise BFR (30% RP) and at 75% 1RM for 3 sets of 10 repetitions. Lactate and cortisol were measured before and up to 60 min after exercise. Thigh circumference, ratings of perceived exertion (RPE), and pain were measured before and after exercise. Surface electromyography was measured during exercise. Results: All conditions had a large effect (effect size [ES] > 0.8) on lactate, with the largest effects observed with the 75% condition; no differences were observed between the 30% conditions. All conditions had a moderate effect (ES > 0.25 ≤ 0.4) on increasing thigh circumference. This effect was maintained (ES = 0.35) with the application of BFR after REx (30% RP). Change in RPE, from the first to last set, was significantly greater with 30% RD compared with other conditions (all p < .05). Electromyography amplitude was higher and percentage change was greater for the 75% condition compared with the other conditions (both p < .05). Conclusions: The application of BFR immediately post-REx altered several of the responses associated with REx that is aimed at inducing muscular hypertrophy. Additionally, these changes occurred with less pain and perceived exertion suggesting that this form of REx may offer an alternative, tolerable method of REx.  相似文献   

7.
ABSTRACT

A quick, well-timed pelvic-floor muscle contraction during physical effort is recommended for active women to prevent urine leakage. Purpose: We address two research questions: how well do future female exercise professionals contract the pelvic-floor muscles, and whether the biofeedback session is necessary to train them to contract pelvic-floor muscles? Method: Participants were 84 nulliparous future exercise professionals (age 23 ± 3 years, mean ± SD), randomly allocated into biofeedback (n = 27), usual-advice (n = 26), and control (no advice, n = 21) groups. Contraction of pelvic-floor muscles on a 4-point scale (1 = incorrect through 4 = correct) was assessed in all groups by surface electromyography (sEMG) with a vaginal probe before and after 6 weeks of intervention. Results: In pretest, almost one in five participants (17%) could not activate the pelvic floor and less than half of them (45%) presented correct technique. The technique score for the three groups was 3.1 ± 1.1 (mean ± SD). After training, both intervention groups presented better technique score by 0.6 (90% confidence limits ± 0.5) relative to the control group, and two-thirds (65%) of the intervention groups presented the correct technique. Conclusions: Future exercise professionals displayed poor skills in contracting pelvic-floor muscles. Both training interventions (with and without biofeedback) were effective for this study group.  相似文献   

8.
This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set?=?30:15:15:continued to fatigue) with BFR (110?mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4?h post-exercise. mRNA expression was determined using real-time RT–PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p?=?0.05) at 2?h following BFR (1.3?±?0.8) compared to CON (0.4?±?0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2?h (5.9?±?1.3 vs. 2.1?±?0.8; p?=?0.03) and 4?h (3.2?±?0.8 vs. 1.5?±?0.4; p?=?0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2?h (5.2?±?2.8 vs 1.7?±?1.1; p?=?.02) and 4?h (6.8?±?4.9 vs. 2.5?±?2.7; p?=?.01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.  相似文献   

9.
不同振动模式中小腿肌肉的诱发激活特征比较研究   总被引:5,自引:3,他引:2  
振动训练作为一种新型的力量训练手段被广泛地运用,但是,低频率的垂直振动与多维组合振动对下肢肌群激活特征的研究结果尚不明确。 分析不同振动模式下、不同振动频率的全身振动刺激对小腿肌群的表面肌电影响。对20 名健康的大学生进行测试,结果发现:振动刺激能够增大肌 肉的放电量;但在多维组合振动中,随振动频率增加,肌肉的激活程度呈阶梯状递增,存在明显的强度梯度,并且在对肌肉的协调激活和针对性激活 上优于单维垂直振动。这为今后如何运用振动训练提供参考,为人们正确认识振动训练的作用和使用方法提供理论依据。  相似文献   

10.
The purpose was to examine changes in the perceptual responses to lifting a very low load (15% one repetition maximum (1RM)) with and without (15/0) different pressures [40% (15/40) and 80% (15/80) arterial occlusion pressure] and compare that to traditional high load (70/0) resistance exercise. Ratings of perceived exertion (RPE) and discomfort were measured following each set of exercise. In addition, resting arterial occlusion pressure was measured prior to exercise. Assessments were made in training sessions 1, 9, and 16 for the upper and lower body. Data are presented as means and 95% CI. There were changes in RPE in the upper body with condition 15/40 [?2.1 (?3.4, ?0.850)] and 15/80 [?2.4 (?3.6, ?1.1)] decreasing by the end of training. In the lower body, RPE decreased in condition 15/40 [?1.4 (?2.3, ?0.431)] by the end of the training study. There was a main effect of time in the upper body with all conditions decreasing discomfort. In the lower body, all conditions decreased except for 15/80. For arterial occlusion pressure, there were differences across time in the 15/40 condition and the 15/80 condition in the upper body. Repeated exposure to blood flow restriction may dampen the perceptual responses over time.  相似文献   

11.
探讨全身性振动介入抗阻力训练对能量消耗的影响,为体重控制及健身减肥者制定有效的运动处方提供依据。方法:以我院体育教育专业健康男性为对象,利用气体代谢分析仪及心率表对"振动介入+抗阻力训练"(实验组,Resistance exercise+Vibration,REV)及单纯"抗阻力训练"(对照组,Resistance exercise, RE)模式下的摄氧及能量消耗等指标进行监测,并运用SPSS17.0对相关指标进行统计分析。结果:1)REV组在训练中及训练后0-25分、25-50分的总每分钟能量消耗及每分钟最大摄氧显著高于RE组;2)抗阻力训练结束后相当长的时间内以脂肪消耗供能为主,表现为REV组脂肪供能比例明显高于RE组;3)抗阻力训练能显著提升训练中呼吸交换率及换气量,表现为REV组提升率高于RE组。结论:全身性振动介入抗阻力训练可比单纯抗阻力增加更多能量消耗,且在训练后恢复期能提升脂肪供能比例,故控体重运动员及健身减肥者将振动作为辅助训练手段是非常有效的。  相似文献   

12.
马维平 《体育科研》2010,31(5):91-94
用每周一次的肌肉力量训练频率的方法,对高校从未受过常规定期的肌肉力量训练普通大学生,进行在每周一次的体育课上进行了为期10周的肌肉力量训练实验,以观察肌肉力量训练产生的效果。训练前后为他们测试了卧推杠铃和直立杠铃弯举的成绩(1RM),还分别测量了练习前后大腿围和上臂围等。训练周期以后1RM比开始前增加了10%以上,不管是卧推杠铃还是直立杠铃弯举等项目都有明显的进步。结果表明,每周一次频率的肌肉力量练习确实能增加大学生的肌肉力量,但这种形式的锻炼并未能使身体形态发生明显的变化。  相似文献   

13.
This study investigated the autonomic and haemodynamic responses to different aerobic exercise loads, with and without blood flow restriction (BFR). In a crossover study, 21 older adults (8 males and 13 females) completed different aerobic exercise sessions: low load without BFR (LL) (40% VO2max), low load with BFR (LL-BFR) (40% VO2max + 50% BFR) and high load without BFR (HL) (70% VO2max). Heart rate variability and haemodynamic responses were recorded during rest and throughout 30 min of recovery. HL reduced R–R interval, the root mean square of successive difference of R–R intervals and high frequency during 30 min of recovery at a greater magnitude compared with LL and LL-BFR. Sympathetic–vagal balance increased the values for HL during 30 min of recovery at a greater magnitude when compared with LL and LL-BFR. Post-exercise haemodynamic showed reduced values of double product at 30 min of recovery compared to rest in LL-BFR, while HL showed higher values compared to rest, LL-BFR and LL. Reduced systolic blood pressure was observed for LL-BFR (30 min) compared to rest. Autonomic and haemodynamic responses indicate lower cardiovascular stress after LL-BFR compared to HL, being this method, besides the functional adaptations, a potential choice to attenuate the cardiovascular stress after exercise in older adults.  相似文献   

14.
为了充分证实不同的力量练习计划对老年人体质健康影响的效果,通过对比高速率的变阻训练(HV)、由慢到快速率的等阻训练(CT)以及高速率的变阻练习与身体功能练习相结合(CB)的3种不同的短期力量练习计划对老年人的肌肉功能和身体活动能力的影响进行了实证性研究。研究结果显示:与控制组(CO)相比,HV组、CT组以及CB组的肌肉力量都有显著性的提高,而CO的力量呈轻微的下降趋势;每周两次的HV练习在提高力量和爆发性身体功能时,要优于CT和CB组;与HV和CT组相比,CB组对增加老年人的力量也是有效的,这个结果对于那些不愿意或不能频繁参加力量练习的老年人是一个重要提示。  相似文献   

15.
李高华  李春艳 《体育科技》2011,32(2):30-33,54
目的:探讨摔跤运动员血清脂联素的水平及其与体成分的相关性,并分析一次急性抗阻训练对摔跤运动员血清脂联素水平的影响。方法:将研究对象分为运动员组(12人)和对照组(12人),对安静时血清脂联素的水平及与体成分的关系进行分析。抗阻训练后,休息30min,再测定血清脂联素水平,对比研究摔跤运动员训练前后血清脂联素水平的变化。结果:1.安静时,摔跤运动员血清脂联素水平显著高于对照组(P〈0.01)。2.急性抗阻训练后,血清脂联索水平下降,但没有显著性差异(P〉0.05)。3.血清脂联素水平与俸脂%(P〈0.05)、甘油三酯(P〈0.05)有显著负相关;与肌肉(P〈0.05)有显著正相关。结论:1.长期抗阻训练可显著增加血清脂联素水平,急性抗阻训练对脂联素没有显著性影响。2.脂联素与肌肉瘦体、体脂相关。3.单纯用BMI来研究与脂联素的相关关系有一定的局限性,要考虑不同个体体成分差异。  相似文献   

16.
Abstract

High-intensity intermittent exercise substantially increases muscle glucose transport, which is thought to be the rate-limiting step for glycogen synthesis. In the present study, we compared muscle glycogen supercompensation after high-intensity intermittent exercise with that observed after low-intensity continuous exercise in rats. Four- to five-week-old male Sprague-Dawley rats performed either low-intensity swimming (240 min of swimming exercise with a weight equivalent to 1% of their body mass; LOW) or high-intensity swimming (twenty 30-s swimming bouts with 30 s rest between bouts with a weight equivalent to 16% of their body mass; HIGH) to deplete muscle glycogen. After the glycogen-depleting exercise, rats were given a rodent chow diet plus 5% glucose solution for 6 h or 24 h. Immediately after the two types of exercise, glycogen concentration in rat epitrochlearis muscle was similarly depleted. After the 6-h and 24-h recovery periods, muscle glycogen concentrations in both the HIGH and LOW groups were restored well above the normally fed state. Furthermore, muscle glycogen accumulation in the HIGH group for the 6-h and 24-h recovery periods was not significantly different from that observed in the LOW group. The high-intensity intermittent swimming exercise also induced muscle glycogen supercompensation in well-trained rats that had performed 7 days of endurance swimming training (6 h per day). Our results indicate that high-intensity intermittent exercise as well as low-intensity continuous exercise could induce glycogen supercompensation in rat skeletal muscle.  相似文献   

17.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO 2max = 64 - 2 ml·kg -1 ·min -1 ; mean - sx ¥ ) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group ( P h 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 - 4% and 18 - 4% respectively; compared with placebo, P h 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 - 30 and 115 - 38 s (3.8 - 1.7% and 4.6 - 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

18.
We evaluated the effects of specific inspiratory muscle training on simulated time-trial performance in trained cyclists. Using a double-blind, placebo-controlled design, 16 male cyclists (VO2max = 64 +/- 2 ml x kg(-1) x min(-1); mean +/- s(x)) were assigned at random to either an experimental (pressure-threshold inspiratory muscle training) or sham-training control (placebo) group. Pulmonary function, maximum dynamic inspiratory muscle function and the physiological and perceptual responses to maximal incremental cycling were assessed. Simulated time-trial performance (20 and 40 km) was quantified as the time to complete pre-set amounts of work. Pulmonary function was unchanged after the intervention, but dynamic inspiratory muscle function improved in the inspiratory muscle training group (P < or = 0.05). After the intervention, the inspiratory muscle training group experienced a reduction in the perception of respiratory and peripheral effort (Borg CR10: 16 +/- 4% and 18 +/- 4% respectively; compared with placebo, P < or = 0.01) and completed the simulated 20 and 40 km time-trials faster than the placebo group [66 +/- 30 and 115 +/- 38 s (3.8 +/- 1.7% and 4.6 +/- 1.9%) faster respectively; P = 0.025 and 0.009]. These results support evidence that specific inspiratory muscle training attenuates the perceptual response to maximal incremental exercise. Furthermore, they provide evidence of performance enhancements in competitive cyclists after inspiratory muscle training.  相似文献   

19.
目的:探讨不同负荷运动训练对大鼠骨骼肌线粒体三羧酸循环的影响及其机制。方法:将雄性Wistar大鼠50只随机均分为5组:安静对照组(C)、低负荷运动训练组(LT)、中等负荷运动训练组(MT)、高负荷运动训练组(HT)和极高负荷运动训练组(ST),每组10只。各运动组分别进行6周的跑台运动训练。训练方案结束后,取腓肠肌样本,提取线粒体,测定线粒体柠檬酸合成酶(CS)、异柠檬酸脱氢酶(ICD)和α-酮戊二酸脱氢酶(α-KGDHC)活性;线粒体Ga2+含量、胞浆NADH、NAD+、ATP和ADP含量,以及ICD mRNA转录水平。结果:(1)不同负荷运动训练组线粒体CS、ICD和α-KGDHC的活性均显著高于安静对照组(P < 0.01),且CS和ICD活性由高到低顺序均为:MT组 > HT组 > ST组 > LT组 > C组,α-KGDHC活性由高到低顺序为:HT组 > MT组 > ST组 > LT组 > C组。(2)不同负荷运动训练组线粒体Ca2+ 含量均显著高于安静对照组(P < 0.01),其含量由高到低顺序为:MT组 > HT组 > ST组 > LT组 > C组;胞浆NADH/NAD+和ATP/ADP的比值均显著低于安静对照组(P < 0.01),其比值由低到高顺序为:MT组 < ST组 < HT组 < LT组 < C组。(3)不同负荷运动训练组ICD mRNA转录水平均高于安静对照组(P < 0.01),其水平由高到低顺序为: MT组 > HT组 > ST组 > LT组 > C组。结论:低负荷、中等负荷、高负荷及极高负荷运动训练均可提高大鼠骨骼肌线粒体三羧酸循环功能,且中等负荷运动训练效果最佳。其机制与胞浆NADH/NAD+和ATP/ADP比值、线粒体摄钙能力及限速酶基因的表达有关。  相似文献   

20.
The protective action of remote ischaemic preconditioning (RIPC) has been demonstrated in the context of surgical interventions in cardiology. Application of RIPC to sports performance has been proposed, but its effect on the electrocardiogram (ECG) during exercise remains unknown. This exploratory study aims to measure the changes in ventricular repolarization observed during exercise following RIPC in healthy subjects. In an experimental randomized crossover study, 17 subjects underwent two bouts of constant load exercise tests at 75% and 115% of gas exchange threshold (GET). Prior to exercise, they were allocated to either control or RIPC intervention with four cycles of 5?min of ischaemia followed by 5?min of reperfusion. ECG was continuously recorded during the protocol. QT and RR intervals were measured every 30?s (on an average tracing of the preceding 10?s). Although the time course of RR intervals did not differ between the two interventions (p?=?.56 at 75% GET and p?=?.74 at 115% GET), a significant shortening of QT intervals (measured from Q onset to T end) was observed during exercise (mean?±?standard deviation of RIPC vs. control: ?32?±?19?ms at 75% GET (p?p?p?p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号